Large-scale deployment of generative AI tools often depends on costly API calls to a Large Language Model (LLM) to fulfil user queries, a process that also exposes the request stream to external providers. To curtail the frequency of these calls, one can employ a local smaller language model -a student- which is continuously trained on the responses of the LLM. This student gradually gains proficiency in independently handling an increasing number of user requests, a process we term neural caching. The crucial element in neural caching is a policy that decides which requests should be processed by the student alone and which should be redirected to the LLM, subsequently aiding the student’s learning. In this study, we focus on classification tasks, and we consider a range of classic Active Learning-based selection criteria as the policy. Our experiments suggest that Margin Sampling and Query by Committee bring consistent benefits over other policies and baselines across tasks and budgets.
Strong inductive biases enable learning from little data and help generalization outside the training distribution. Popular neural architectures such as Transformers lack strong structural inductive biases for seq2seq NLP tasks on their own. Consequently, they struggle with systematic generalization beyond the training distribution, e.g. with extrapolating to longer inputs, even when pre-trained on large amounts of text.We show how a structural inductive bias can be efficiently injected into a seq2seq model by pre-training it to simulate structural transformations on synthetic data. Specifically, we inject an inductive bias towards Finite State Transducers (FSTs) into a Transformer by pre-training it to simulate FSTs given their descriptions. Our experiments show that our method imparts the desired inductive bias, resulting in improved systematic generalization and better few-shot learning for FST-like tasks. Our analysis shows that fine-tuned models accurately capture the state dynamics of the unseen underlying FSTs, suggesting that the simulation process is internalized by the fine-tuned model.
Seq2seq models have been shown to struggle with compositional generalisation, i.e. generalising to new and potentially more complex structures than seen during training. Taking inspiration from grammar-based models that excel at compositional generalisation, we present a flexible end-to-end differentiable neural model that composes two structural operations: a fertility step, which we introduce in this work, and a reordering step based on previous work (Wang et al., 2021). To ensure differentiability, we use the expected value of each step, which we compute using dynamic programming. Our model outperforms seq2seq models by a wide margin on challenging compositional splits of realistic semantic parsing tasks that require generalisation to longer examples. It also compares favourably to other models targeting compositional generalisation.
Seq2seq models have been shown to struggle with compositional generalization in semantic parsing, i.e. generalizing to unseen compositions of phenomena that the model handles correctly in isolation. We phrase semantic parsing as a two-step process: we first tag each input token with a multiset of output tokens. Then we arrange the tokens into an output sequence using a new way of parameterizing and predicting permutations. We formulate predicting a permutation as solving a regularized linear program and we backpropagate through the solver. In contrast to prior work, our approach does not place a priori restrictions on possible permutations, making it very expressive. Our model outperforms pretrained seq2seq models and prior work on realistic semantic parsing tasks that require generalization to longer examples. We also outperform non-tree-based models on structural generalization on the COGS benchmark. For the first time, we show that a model without an inductive bias provided by trees achieves high accuracy on generalization to deeper recursion depth.
Recent improvements in automatic news summarization fundamentally rely on large corpora of news articles and their summaries. These corpora are often constructed by scraping news websites, which results in including not only summaries but also other kinds of texts. Apart from more generic noise, we identify straplines as a form of text scraped from news websites that commonly turn out not to be summaries. The presence of these non-summaries threatens the validity of scraped corpora as benchmarks for news summarization. We have annotated extracts from two news sources that form part of the Newsroom corpus (Grusky et al., 2018), labeling those which were straplines, those which were summaries, and those which were both. We present a rule-based strapline detection method that achieves good performance on a manually annotated test set. Automatic evaluation indicates that removing straplines and noise from the training data of a news summarizer results in higher quality summaries, with improvements as high as 7 points ROUGE score.
The emergence of a variety of graph-based meaning representations (MRs) has sparked an important conversation about how to adequately represent semantic structure. MRs exhibit structural differences that reflect different theoretical and design considerations, presenting challenges to uniform linguistic analysis and cross-framework semantic parsing. Here, we ask the question of which design differences between MRs are meaningful and semantically-rooted, and which are superficial. We present a methodology for normalizing discrepancies between MRs at the compositional level (Lindemann et al., 2019), finding that we can normalize the majority of divergent phenomena using linguistically-grounded rules. Our work significantly increases the match in compositional structure between MRs and improves multi-task learning (MTL) in a low-resource setting, serving as a proof of concept for future broad-scale cross-MR normalization.
AM dependency parsing is a linguistically principled method for neural semantic parsing with high accuracy across multiple graphbanks. It relies on a type system that models semantic valency but makes existing parsers slow. We describe an A* parser and a transition-based parser for AM dependency parsing which guarantee well-typedness and improve parsing speed by up to 3 orders of magnitude, while maintaining or improving accuracy.
Most semantic parsers that map sentences to graph-based meaning representations are hand-designed for specific graphbanks. We present a compositional neural semantic parser which achieves, for the first time, competitive accuracies across a diverse range of graphbanks. Incorporating BERT embeddings and multi-task learning improves the accuracy further, setting new states of the art on DM, PAS, PSD, AMR 2015 and EDS.
We describe the Saarland University submission to the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2019 Conference on Computational Natural Language Learning (CoNLL).
Sentences like “Every child climbed a tree” have at least two interpretations depending on the precedence order of the universal quantifier and the indefinite. Previous experimental work explores the role that different mechanisms such as semantic reanalysis and world knowledge may have in enabling each interpretation. This paper discusses a web-based task that uses the verb-second characteristic of German main clauses to estimate the influence of word order variation over world knowledge.
We present a semantic parser for Abstract Meaning Representations which learns to parse strings into tree representations of the compositional structure of an AMR graph. This allows us to use standard neural techniques for supertagging and dependency tree parsing, constrained by a linguistically principled type system. We present two approximative decoding algorithms, which achieve state-of-the-art accuracy and outperform strong baselines.