Despite the widespread adoption, there is a lack of research into how various critical aspects of pretrained language models (PLMs) affect their performance in hate speech detection. Through five research questions, our findings and recommendations lay the groundwork for empirically investigating different aspects of PLMs’ use in hate speech detection. We deep dive into comparing different pretrained models, evaluating their seed robustness, finetuning settings, and the impact of pretraining data collection time. Our analysis reveals early peaks for downstream tasks during pretraining, the limited benefit of employing a more recent pretraining corpus, and the significance of specific layers during finetuning. We further call into question the use of domain-specific models and highlight the need for dynamic datasets for benchmarking hate speech detection.
Employing language models to generate explanations for an incoming implicit hate post is an active area of research. The explanation is intended to make explicit the underlying stereotype and aid content moderators. The training often combines top-k relevant knowledge graph (KG) tuples to provide world knowledge and improve performance on standard metrics. Interestingly, our study presents conflicting evidence for the role of the quality of KG tuples in generating implicit explanations. Consequently, simpler models incorporating external toxicity signals outperform KG-infused models. Compared to the KG-based setup, we observe a comparable performance for SBIC (LatentHatred) datasets with a performance variation of +0.44 (+0.49), +1.83 (-1.56), and -4.59 (+0.77) in BLEU, ROUGE-L, and BERTScore. Further human evaluation and error analysis reveal that our proposed setup produces more precise explanations than zero-shot GPT-3.5, highlighting the intricate nature of the task.
Healthcare Community Question Answering (CQA) forums offer an accessible platform for individuals seeking information on various healthcare-related topics. People find such platforms suitable for self-disclosure, seeking medical opinions, finding simplified explanations for their medical conditions, and answering others’ questions. However, answers on these forums are typically diverse and prone to off-topic discussions. It can be challenging for readers to sift through numerous answers and extract meaningful insights, making answer summarization a crucial task for CQA forums. While several efforts have been made to summarize the community answers, most of them are limited to the open domain and overlook the different perspectives offered by these answers. To address this problem, this paper proposes a novel task of perspective-specific answer summarization. We identify various perspectives, within healthcare-related responses and frame a perspective-driven abstractive summary covering all responses. To achieve this, we annotate 3167 CQA threads with 6193 perspective-aware summaries in our PUMA dataset. Further, we propose PLASMA, a prompt-driven controllable summarization model. To encapsulate the perspective-specific conditions, we design an energy-controlled loss function for the optimization. We also leverage the prefix tuner to learn the intricacies of the healthcare perspective summarization. Our evaluation against five baselines suggests the superior performance of PLASMA by a margin of ~1.5 - 21% improvement. We supplement our experiments with ablation and qualitative analysis.
In the realm of conversational dynamics, individual idiosyncrasies challenge the suitability of a one-size-fits-all approach for dialogue agent responses. Prior studies often assumed the speaker’s persona’s immediate availability, a premise not universally applicable. To address this gap, we explore the Speaker Profiling in Conversations (SPC) task, aiming to synthesize persona attributes for each dialogue participant. SPC comprises three core subtasks: persona discovery, persona-type identification, and persona-value extraction. The first subtask identifies persona-related utterances, the second classifies specific attributes, and the third extracts precise values for the persona. To confront this multifaceted challenge, we’ve diligently compiled SPICE, an annotated dataset, underpinning our thorough evaluation of diverse baseline models. Additionally, we benchmark these findings against our innovative neural model, SPOT, presenting an exhaustive analysis encompassing a nuanced assessment of quantitative and qualitative merits and limitations.
Privacy policy documents have a crucial role in educating individuals about the collection, usage, and protection of users’ personal data by organizations. However, they are notorious for their lengthy, complex, and convoluted language especially involving privacy-related entities. Hence, they pose a significant challenge to users who attempt to comprehend organization’s data usage policy. In this paper, we propose to enhance the interpretability and readability of policy documents by using controlled abstractive summarization – we enforce the generated summaries to include critical privacy-related entities (e.g., data and medium) and organization’s rationale (e.g., target and reason) in collecting those entities. To achieve this, we develop PD-Sum, a policy-document summarization dataset with marked privacy-related entity labels. Our proposed model, EROS, identifies critical entities through a span-based entity extraction model and employs them to control the information content of the summaries using proximal policy optimization (PPO). Comparison shows encouraging improvement over various baselines. Furthermore, we furnish qualitative and human evaluations to establish the efficacy of EROS.
The widespread online communication in a modern multilingual world has provided opportunities to blend more than one language (aka code-mixed language) in a single utterance. This has resulted a formidable challenge for the computational models due to the scarcity of annotated data and presence of noise. A potential solution to mitigate the data scarcity problem in low-resource setup is to leverage existing data in resource-rich language through translation. In this paper, we tackle the problem of code-mixed (Hinglish and Bengalish) to English machine translation. First, we synthetically develop HINMIX, a parallel corpus of Hinglish to English, with ~4.2M sentence pairs. Subsequently, we propose RCMT, a robust perturbation based joint-training model that learns to handle noise in the real-world code-mixed text by parameter sharing across clean and noisy words. Further, we show the adaptability of RCMT in a zero-shot setup for Bengalish to English translation. Our evaluation and comprehensive analyses qualitatively and quantitatively demonstrate the superiority of RCMT over state-of-the-art code-mixed and robust translation methods.
We present SemEval-2024 Task 10, a shared task centred on identifying emotions and finding the rationale behind their flips within monolingual English and Hindi-English code-mixed dialogues. This task comprises three distinct subtasks – emotion recognition in conversation for code-mixed dialogues, emotion flip reasoning for code-mixed dialogues, and emotion flip reasoning for English dialogues. Participating systems were tasked to automatically execute one or more of these subtasks. The datasets for these tasks comprise manually annotated conversations focusing on emotions and triggers for emotion shifts.1 A total of 84 participants engaged in this task, with the most adept systems attaining F1-scores of 0.70, 0.79, and 0.76 for the respective subtasks. This paper summarises the results and findings from 24 teams alongside their system descriptions.
Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. The effectiveness of addressing hate speech involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. The first two phases of CoARL involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and nontoxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of ∼3 points in intent-conformity and ∼4 points in argument-quality metrics. Extensive human evaluation supports CoARL’s efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.
Memes are a powerful tool for communication over social media. Their affinity for evolving across politics, history, and sociocultural phenomena renders them an ideal vehicle for communication. To comprehend the subtle message conveyed within a meme, one must understand the relevant background that facilitates its holistic assimilation. Besides digital archiving of memes and their metadata by a few websites like knowyourmeme.com, currently, there is no efficient way to deduce a meme’s context dynamically. In this work, we propose a novel task, MEMEX - given a meme and a related document, the aim is to mine the context that succinctly explains the background of the meme. At first, we develop MCC (Meme Context Corpus), a novel dataset for MEMEX. Further, to benchmark MCC, we propose MIME (MultImodal Meme Explainer), a multimodal neural framework that uses external knowledge-enriched meme representation and a multi-level approach to capture the cross-modal semantic dependencies between the meme and the context. MIME surpasses several unimodal and multimodal systems and yields an absolute improvement of 4% F1-score over the best baseline. Lastly, we conduct detailed analyses of MIME’s performance, highlighting the aspects that could lead to optimal modeling of cross-modal contextual associations.
Counterspeech has been demonstrated to be an efficacious approach for combating hate speech. While various conventional and controlled approaches have been studied in recent years to generate counterspeech, a counterspeech with a certain intent may not be sufficient in every scenario. Due to the complex and multifaceted nature of hate speech, utilizing multiple forms of counter-narratives with varying intents may be advantageous in different circumstances. In this paper, we explore intent-conditioned counterspeech generation. At first, we develop IntentCONAN, a diversified intent-specific counterspeech dataset with 6831 counterspeeches conditioned on five intents, i.e., informative, denouncing, question, positive, and humour. Subsequently, we propose QUARC, a two-stage framework for intent-conditioned counterspeech generation. QUARC leverages vector-quantized representations learned for each intent category along with PerFuMe, a novel fusion module to incorporate intent-specific information into the model. Our evaluation demonstrates that QUARC outperforms several baselines by an average of ~10% across evaluation metrics. An extensive human evaluation supplements our hypothesis of better and more appropriate responses than comparative systems.
Memes can sway people’s opinions over social media as they combine visual and textual information in an easy-to-consume manner. Since memes instantly turn viral, it becomes crucial to infer their intent and potentially associated harmfulness to take timely measures as needed. A common problem associated with meme comprehension lies in detecting the entities referenced and characterizing the role of each of these entities. Here, we aim to understand whether the meme glorifies, vilifies, or victimizes each entity it refers to. To this end, we address the task of role identification of entities in harmful memes, i.e., detecting who is the ‘hero’, the ‘villain’, and the ‘victim’ in the meme, if any. We utilize HVVMemes – a memes dataset on US Politics and Covid-19 memes, released recently as part of the CONSTRAINT@ACL-2022 shared-task. It contains memes, entities referenced, and their associated roles: hero, villain, victim, and other. We further design VECTOR (Visual-semantic role dEteCToR), a robust multi-modal framework for the task, which integrates entity-based contextual information in the multi-modal representation and compare it to several standard unimodal (text-only or image-only) or multi-modal (image+text) models. Our experimental results show that our proposed model achieves an improvement of 4% over the best baseline and 1% over the best competing stand-alone submission from the shared-task. Besides divulging an extensive experimental setup with comparative analyses, we finally highlight the challenges encountered in addressing the complex task of semantic role labeling within memes.
The widespread diffusion of medical and political claims in the wake of COVID-19 has led to a voluminous rise in misinformation and fake news. The current vogue is to employ manual fact-checkers to efficiently classify and verify such data to combat this avalanche of claim-ridden misinformation. However, the rate of information dissemination is such that it vastly outpaces the fact-checkers’ strength. Therefore, to aid manual fact-checkers in eliminating the superfluous content, it becomes imperative to automatically identify and extract the snippets of claim-worthy (mis)information present in a post. In this work, we introduce the novel task of Claim Span Identification (CSI). We propose CURT, a large-scale Twitter corpus with token-level claim spans on more than 7.5k tweets. Furthermore, along with the standard token classification baselines, we benchmark our dataset with DABERTa, an adapter-based variation of RoBERTa. The experimental results attest that DABERTa outperforms the baseline systems across several evaluation metrics, improving by about 1.5 points. We also report detailed error analysis to validate the model’s performance along with the ablation studies. Lastly, we release our comprehensive span annotation guidelines for public use.
We present the findings of the shared task at the CONSTRAINT 2022 Workshop: Hero, Villain, and Victim: Dissecting harmful memes for Semantic role labeling of entities. The task aims to delve deeper into the domain of meme comprehension by deciphering the connotations behind the entities present in a meme. In more nuanced terms, the shared task focuses on determining the victimizing, glorifying, and vilifying intentions embedded in meme entities to explicate their connotations. To this end, we curate HVVMemes, a novel meme dataset of about 7000 memes spanning the domains of COVID-19 and US Politics, each containing entities and their associated roles: hero, villain, victim, or none. The shared task attracted 105 participants, but eventually only 6 submissions were made. Most of the successful submissions relied on fine-tuning pre-trained language and multimodal models along with ensembles. The best submission achieved an F1-score of 58.67.
During the COVID-19 pandemic, the spread of misinformation on online social media has grown exponentially. Unverified bogus claims on these platforms regularly mislead people, leading them to believe in half-baked truths. The current vogue is to employ manual fact-checkers to verify claims to combat this avalanche of misinformation. However, establishing such claims’ veracity is becoming increasingly challenging, partly due to the plethora of information available, which is difficult to process manually. Thus, it becomes imperative to verify claims automatically without human interventions. To cope up with this issue, we propose an automated claim verification solution encompassing two steps – document retrieval and veracity prediction. For the retrieval module, we employ a hybrid search-based system with BM25 as a base retriever and experiment with recent state-of-the-art transformer-based models for re-ranking. Furthermore, we use a BART-based textual entailment architecture to authenticate the retrieved documents in the later step. We report experimental findings, demonstrating that our retrieval module outperforms the best baseline system by 10.32 NDCG@100 points. We escort a demonstration to assess the efficacy and impact of our suggested solution. As a byproduct of this study, we present an open-source, easily deployable, and user-friendly Python API that the community can adopt.
Indirect speech such as sarcasm achieves a constellation of discourse goals in human communication. While the indirectness of figurative language warrants speakers to achieve certain pragmatic goals, it is challenging for AI agents to comprehend such idiosyncrasies of human communication. Though sarcasm identification has been a well-explored topic in dialogue analysis, for conversational systems to truly grasp a conversation’s innate meaning and generate appropriate responses, simply detecting sarcasm is not enough; it is vital to explain its underlying sarcastic connotation to capture its true essence. In this work, we study the discourse structure of sarcastic conversations and propose a novel task – Sarcasm Explanation in Dialogue (SED). Set in a multimodal and code-mixed setting, the task aims to generate natural language explanations of satirical conversations. To this end, we curate WITS, a new dataset to support our task. We propose MAF (Modality Aware Fusion), a multimodal context-aware attention and global information fusion module to capture multimodality and use it to benchmark WITS. The proposed attention module surpasses the traditional multimodal fusion baselines and reports the best performance on almost all metrics. Lastly, we carry out detailed analysis both quantitatively and qualitatively.
Existing self-supervised learning strategies are constrained to either a limited set of objectives or generic downstream tasks that predominantly target uni-modal applications. This has isolated progress for imperative multi-modal applications that are diverse in terms of complexity and domain-affinity, such as meme analysis. Here, we introduce two self-supervised pre-training methods, namely Ext-PIE-Net and MM-SimCLR that (i) employ off-the-shelf multi-modal hate-speech data during pre-training and (ii) perform self-supervised learning by incorporating multiple specialized pretext tasks, effectively catering to the required complex multi-modal representation learning for meme analysis. We experiment with different self-supervision strategies, including potential variants that could help learn rich cross-modality representations and evaluate using popular linear probing on the Hateful Memes task. The proposed solutions strongly compete with the fully supervised baseline via label-efficient training while distinctly outperforming them on all three tasks of the Memotion challenge with 0.18%, 23.64%, and 0.93% performance gain, respectively. Further, we demonstrate the generalizability of the proposed solutions by reporting competitive performance on the HarMeme task. Finally, we empirically establish the quality of the learned representations by analyzing task-specific learning, using fewer labeled training samples, and arguing that the complexity of the self-supervision strategy and downstream task at hand are correlated. Our efforts highlight the requirement of better multi-modal self-supervision methods involving specialized pretext tasks for efficient fine-tuning and generalizable performance.
Internet memes have emerged as an increasingly popular means of communication on the web. Although memes are typically intended to elicit humour, they have been increasingly used to spread hatred, trolling, and cyberbullying, as well as to target specific individuals, communities, or society on political, socio-cultural, and psychological grounds. While previous work has focused on detecting harmful, hateful, and offensive memes in general, identifying whom these memes attack (i.e., the ‘victims’) remains a challenging and underexplored area. We attempt to address this problem in this paper. To this end, we create a dataset in which we annotate each meme with its victim(s) such as the name of the targeted person(s), organization(s), and community(ies). We then propose DISARM (Detecting vIctimS targeted by hARmful Memes), a framework that uses named-entity recognition and person identification to detect all entities a meme is referring to, and then, incorporates a novel contextualized multimodal deep neural network to classify whether the meme intends to harm these entities. We perform several systematic experiments on three different test sets, corresponding to entities that are (i) all seen while training, (ii) not seen as a harmful target while training, and (iii) not seen at all while training. The evaluation shows that DISARM significantly outperforms 10 unimodal and multimodal systems. Finally, we demonstrate that DISARM is interpretable and comparatively more generalizable and that it can reduce the relative error rate of harmful target identification by up to 9 % absolute over multimodal baseline systems.
Internet memes have become powerful means to transmit political, psychological, and socio-cultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abuse. Detecting such memes is challenging as they can be highly satirical and cryptic. Moreover, while previous work has focused on specific aspects of memes such as hate speech and propaganda, there has been little work on harm in general. Here, we aim to bridge this gap. In particular, we focus on two tasks: (i)detecting harmful memes, and (ii) identifying the social entities they target. We further extend the recently released HarMeme dataset, which covered COVID-19, with additional memes and a new topic: US politics. To solve these tasks, we propose MOMENTA (MultimOdal framework for detecting harmful MemEs aNd Their tArgets), a novel multimodal deep neural network that uses global and local perspectives to detect harmful memes. MOMENTA systematically analyzes the local and the global perspective of the input meme (in both modalities) and relates it to the background context. MOMENTA is interpretable and generalizable, and our experiments show that it outperforms several strong rivaling approaches.
The conceptualization of a claim lies at the core of argument mining. The segregation of claims is complex, owing to the divergence in textual syntax and context across different distributions. Another pressing issue is the unavailability of labeled unstructured text for experimentation. In this paper, we propose LESA, a framework which aims at advancing headfirst into expunging the former issue by assembling a source-independent generalized model that captures syntactic features through part-of-speech and dependency embeddings, as well as contextual features through a fine-tuned language model. We resolve the latter issue by annotating a Twitter dataset which aims at providing a testing ground on a large unstructured dataset. Experimental results show that LESA improves upon the state-of-the-art performance across six benchmark claim datasets by an average of 3 claim-F1 points for in-domain experiments and by 2 claim-F1 points for general-domain experiments. On our dataset too, LESA outperforms existing baselines by 1 claim-F1 point on the in-domain experiments and 2 claim-F1 points on the general-domain experiments. We also release comprehensive data annotation guidelines compiled during the annotation phase (which was missing in the current literature).
We investigate the problem of extracting Indian-locations from a given crowd-sourced textual dataset. The problem of extracting fine-grained Indian-locations has many challenges. One challenge in the task is to collect relevant dataset from the crowd-sourced platforms that contain locations. The second challenge lies in extracting the location entities from the collected data. We provide an in-depth review of the information collection process and our annotation guidelines such that a reliable dataset annotation is guaranteed. We evaluate many recent algorithms and models, including Conditional Random fields (CRF), Bi-LSTM-CNN and BERT (Bidirectional Encoder Representations from Transformers), on our developed dataset named . The study shows the best F1-score of 72.49% for BERT, followed by Bi-LSTM-CNN and CRF. As a result of our work, we prepare a publicly-available annotated dataset of Indian geolocations that can be used by the research community. Code and dataset are available at https://github.com/vkartik2k/STHAL.
In this paper, we propose a language-agnostic deep neural network architecture for aspect-based sentiment analysis. The proposed approach is based on Bidirectional Long Short-Term Memory (Bi-LSTM) network, which is further assisted with extra hand-crafted features. We define three different architectures for the successful combination of word embeddings and hand-crafted features. We evaluate the proposed approach for six languages (i.e. English, Spanish, French, Dutch, German and Hindi) and two problems (i.e. aspect term extraction and aspect sentiment classification). Experiments show that the proposed model attains state-of-the-art performance in most of the settings.
Related tasks often have inter-dependence on each other and perform better when solved in a joint framework. In this paper, we present a deep multi-task learning framework that jointly performs sentiment and emotion analysis both. The multi-modal inputs (i.e. text, acoustic and visual frames) of a video convey diverse and distinctive information, and usually do not have equal contribution in the decision making. We propose a context-level inter-modal attention framework for simultaneously predicting the sentiment and expressed emotions of an utterance. We evaluate our proposed approach on CMU-MOSEI dataset for multi-modal sentiment and emotion analysis. Evaluation results suggest that multi-task learning framework offers improvement over the single-task framework. The proposed approach reports new state-of-the-art performance for both sentiment analysis and emotion analysis.
In recent times, multi-modal analysis has been an emerging and highly sought-after field at the intersection of natural language processing, computer vision, and speech processing. The prime objective of such studies is to leverage the diversified information, (e.g., textual, acoustic and visual), for learning a model. The effective interaction among these modalities often leads to a better system in terms of performance. In this paper, we introduce a recurrent neural network based approach for the multi-modal sentiment and emotion analysis. The proposed model learns the inter-modal interaction among the participating modalities through an auto-encoder mechanism. We employ a context-aware attention module to exploit the correspondence among the neighboring utterances. We evaluate our proposed approach for five standard multi-modal affect analysis datasets. Experimental results suggest the efficacy of the proposed model for both sentiment and emotion analysis over various existing state-of-the-art systems.
Efficient word representations play an important role in solving various problems related to Natural Language Processing (NLP), data mining, text mining etc. The issue of data sparsity poses a great challenge in creating efficient word representation model for solving the underlying problem. The problem is more intensified in resource-poor scenario due to the absence of sufficient amount of corpus. In this work we propose to minimize the effect of data sparsity by leveraging bilingual word embeddings learned through a parallel corpus. We train and evaluate Long Short Term Memory (LSTM) based architecture for aspect level sentiment classification. The neural network architecture is further assisted by the hand-crafted features for the prediction. We show the efficacy of the proposed model against state-of-the-art methods in two experimental setups i.e. multi-lingual and cross-lingual.
Sentiment analysis has immense implications in e-commerce through user feedback mining. Aspect-based sentiment analysis takes this one step further by enabling businesses to extract aspect specific sentimental information. In this paper, we present a novel approach of incorporating the neighboring aspects related information into the sentiment classification of the target aspect using memory networks. We show that our method outperforms the state of the art by 1.6% on average in two distinct domains: restaurant and laptop.
Multi-modal sentiment analysis offers various challenges, one being the effective combination of different input modalities, namely text, visual and acoustic. In this paper, we propose a recurrent neural network based multi-modal attention framework that leverages the contextual information for utterance-level sentiment prediction. The proposed approach applies attention on multi-modal multi-utterance representations and tries to learn the contributing features amongst them. We evaluate our proposed approach on two multi-modal sentiment analysis benchmark datasets, viz. CMU Multi-modal Opinion-level Sentiment Intensity (CMU-MOSI) corpus and the recently released CMU Multi-modal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) corpus. Evaluation results show the effectiveness of our proposed approach with the accuracies of 82.31% and 79.80% for the MOSI and MOSEI datasets, respectively. These are approximately 2 and 1 points performance improvement over the state-of-the-art models for the datasets.
In this paper, we propose a novel method for combining deep learning and classical feature based models using a Multi-Layer Perceptron (MLP) network for financial sentiment analysis. We develop various deep learning models based on Convolutional Neural Network (CNN), Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). These are trained on top of pre-trained, autoencoder-based, financial word embeddings and lexicon features. An ensemble is constructed by combining these deep learning models and a classical supervised model based on Support Vector Regression (SVR). We evaluate our proposed technique on a benchmark dataset of SemEval-2017 shared task on financial sentiment analysis. The propose model shows impressive results on two datasets, i.e. microblogs and news headlines datasets. Comparisons show that our proposed model performs better than the existing state-of-the-art systems for the above two datasets by 2.0 and 4.1 cosine points, respectively.
This paper describes our system participation in the SemEval-2017 Task 8 ‘RumourEval: Determining rumour veracity and support for rumours’. The objective of this task was to predict the stance and veracity of the underlying rumour. We propose a supervised classification approach employing several lexical, content and twitter specific features for learning. Evaluation shows promising results for both the problems.
This paper reports team IITPB’s participation in the SemEval 2017 Task 5 on ‘Fine-grained sentiment analysis on financial microblogs and news’. We developed 2 systems for the two tracks. One system was based on an ensemble of Support Vector Classifier and Logistic Regression. This system relied on Distributional Thesaurus (DT), word embeddings and lexicon features to predict a floating sentiment value between -1 and +1. The other system was based on Support Vector Regression using word embeddings, lexicon features, and PMI scores as features. The system was ranked 5th in track 1 and 8th in track 2.
In this paper we propose an ensemble based model which combines state of the art deep learning sentiment analysis algorithms like Convolution Neural Network (CNN) and Long Short Term Memory (LSTM) along with feature based models to identify optimistic or pessimistic sentiments associated with companies and stocks in financial texts. We build our system to participate in a competition organized by Semantic Evaluation 2017 International Workshop. We combined predictions from various models using an artificial neural network to determine the opinion towards an entity in (a) Microblog Messages and (b) News Headlines data. Our models achieved a cosine similarity score of 0.751 and 0.697 for the above two tracks giving us the rank of 2nd and 7th best team respectively.
This paper describes the system that we submitted as part of our participation in the shared task on Emotion Intensity (EmoInt-2017). We propose a Long short term memory (LSTM) based architecture cascaded with Support Vector Regressor (SVR) for intensity prediction. We also employ Particle Swarm Optimization (PSO) based feature selection algorithm for obtaining an optimized feature set for training and evaluation. System evaluation shows interesting results on the four emotion datasets i.e. anger, fear, joy and sadness. In comparison to the other participating teams our system was ranked 5th in the competition.
In this paper, we propose a novel hybrid deep learning archtecture which is highly efficient for sentiment analysis in resource-poor languages. We learn sentiment embedded vectors from the Convolutional Neural Network (CNN). These are augmented to a set of optimized features selected through a multi-objective optimization (MOO) framework. The sentiment augmented optimized vector obtained at the end is used for the training of SVM for sentiment classification. We evaluate our proposed approach for coarse-grained (i.e. sentence level) as well as fine-grained (i.e. aspect level) sentiment analysis on four Hindi datasets covering varying domains. In order to show that our proposed method is generic in nature we also evaluate it on two benchmark English datasets. Evaluation shows that the results of the proposed method are consistent across all the datasets and often outperforms the state-of-art systems. To the best of our knowledge, this is the very first attempt where such a deep learning model is used for less-resourced languages such as Hindi.
Due to the phenomenal growth of online product reviews, sentiment analysis (SA) has gained huge attention, for example, by online service providers. A number of benchmark datasets for a wide range of domains have been made available for sentiment analysis, especially in resource-rich languages. In this paper we assess the challenges of SA in Hindi by providing a benchmark setup, where we create an annotated dataset of high quality, build machine learning models for sentiment analysis in order to show the effective usage of the dataset, and finally make the resource available to the community for further advancement of research. The dataset comprises of Hindi product reviews crawled from various online sources. Each sentence of the review is annotated with aspect term and its associated sentiment. As classification algorithms we use Conditional Random Filed (CRF) and Support Vector Machine (SVM) for aspect term extraction and sentiment analysis, respectively. Evaluation results show the average F-measure of 41.07% for aspect term extraction and accuracy of 54.05% for sentiment classification.