Mehran Kazemi


2023

pdf bib
TwiRGCN: Temporally Weighted Graph Convolution for Question Answering over Temporal Knowledge Graphs
Aditya Sharma | Apoorv Saxena | Chitrank Gupta | Mehran Kazemi | Partha Talukdar | Soumen Chakrabarti
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Recent years have witnessed interest in Temporal Question Answering over Knowledge Graphs (TKGQA), resulting in the development of multiple methods. However, these are highly engineered, thereby limiting their generalizability, and they do not automatically discover relevant parts of the KG during multi-hop reasoning. Relational graph convolutional networks (RGCN) provide an opportunity to address both of these challenges – we explore this direction in the paper. Specifically, we propose a novel, intuitive and interpretable scheme to modulate the messages passed through a KG edge during convolution based on the relevance of its associated period to the question. We also introduce a gating device to predict if the answer to a complex temporal question is likely to be a KG entity or time and use this prediction to guide our scoring mechanism. We evaluate the resulting system, which we call TwiRGCN, on a recent challenging dataset for multi-hop complex temporal QA called TimeQuestions. We show that TwiRGCN significantly outperforms state-of-the-art models on this dataset across diverse question types. Interestingly, TwiRGCN improves accuracy by 9–10 percentage points for the most difficult ordinal and implicit question types.

pdf bib
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Mehran Kazemi | Najoung Kim | Deepti Bhatia | Xin Xu | Deepak Ramachandran
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Remarkable progress has been made on automated reasoning with natural text, by using Large Language Models (LLMs) and methods such as Chain-of-Thought prompting and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules, that are simply implemented by few-shot prompted LLM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on two challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.

pdf bib
Using Domain Knowledge to Guide Dialog Structure Induction via Neural Probabilistic Soft Logic
Connor Pryor | Quan Yuan | Jeremiah Liu | Mehran Kazemi | Deepak Ramachandran | Tania Bedrax-Weiss | Lise Getoor
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialog Structure Induction (DSI) is the task of inferring the latent dialog structure (i.e., a set of dialog states and their temporal transitions) of a given goal-oriented dialog. It is a critical component for modern dialog system design and discourse analysis. Existing DSI approaches are often purely data-driven, deploy models that infer latent states without access to domain knowledge, underperform when the training corpus is limited/noisy, or have difficulty when test dialogs exhibit distributional shifts from the training domain. This work explores a neural-symbolic approach as a potential solution to these problems. We introduce Neural Probabilistic Soft Logic Dialogue Structure Induction (NEUPSL DSI), a principled approach that injects symbolic knowledge into the latent space of a generative neural model. We conduct a thorough empirical investigation on the effect of NEUPSL DSI learning on hidden representation quality, few-shot learning, and out-of-domain generalization performance. Over three dialog structure induction datasets and across unsupervised and semi-supervised settings for standard and cross-domain generalization, the injection of symbolic knowledge using NEUPSL DSI provides a consistent boost in performance over the canonical baselines.

pdf bib
KwikBucks: Correlation Clustering with Cheap-Weak and Expensive-Strong Signals
Sandeep Silwal | Sara Ahmadian | Andrew Nystrom | Andrew Mccallum | Deepak Ramachandran | Mehran Kazemi
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)