2023
pdf
bib
abs
NormNet: Normalize Noun Phrases for More Robust NLP
Minlong Peng
|
Mingming Sun
Findings of the Association for Computational Linguistics: ACL 2023
A critical limitation of deep NLP models is their over-fitting over spurious features. Previous work has proposed several approaches to debunk such features and reduce their impact on the learned models. In this work, a normalization strategy is proposed to eliminate the false features caused by the textual surfaces of noun phrases. The motivation for this strategy is that noun phrases often play the role of slots in textual expressions and their exact forms are often not that important for performing the final task. As an intuitive example, consider the expression ”x like eating y". There are a huge number of suitable instantiations for x and y in the locale. However, humans can already infer the sentiment polarity of x toward y without knowing their exact forms.Based on this intuition, we introduce NormNet, a pretrained language model based network, to implement the normalization strategy. NormNet learns to replace as many noun phrases in the input sentence as possible with pre-defined base forms. The output of NormNet is then fed as input to a prompt-based learning model to perform label prediction. To evaluate the effectiveness of our strategy, we conducted experimental studies on several tasks, including aspect sentiment classification (ASC), semantic text similarity (STS), and natural language inference (NLI). The experimental results confirm the effectiveness of our strategy.
pdf
bib
abs
A Semi-Autoregressive Graph Generative Model for Dependency Graph Parsing
Ye Ma
|
Mingming Sun
|
Ping Li
Findings of the Association for Computational Linguistics: ACL 2023
Recent years have witnessed the impressive progress in Neural Dependency Parsing. According to the different factorization approaches to the graph joint probabilities, existing parsers can be roughly divided into autoregressive and non-autoregressive patterns. The former means that the graph should be factorized into multiple sequentially dependent components, then it can be built up component by component. And the latter assumes these components to be independent so that they can be outputted in a one-shot manner. However, when treating the directed edge as an explicit dependency relationship, we discover that there is a mixture of independent and interdependent components in the dependency graph, signifying that both aforementioned models fail to precisely capture the explicit dependencies among nodes and edges. Based on this property, we design a Semi-Autoregressive Dependency Parser to generate dependency graphs via adding node groups and edge groups autoregressively while pouring out all group elements in parallel. The model gains a trade-off between non-autoregression and autoregression, which respectively suffer from the lack of target inter-dependencies and the uncertainty of graph generation orders. The experiments show the proposed parser outperforms strong baselines on Enhanced Universal Dependencies of multiple languages, especially achieving 4% average promotion at graph-level accuracy. Also, the performances of model variations show the importance of specific parts.
pdf
bib
abs
Connectivity Patterns are Task Embeddings
Zhiheng Xi
|
Rui Zheng
|
Yuansen Zhang
|
Xuanjing Huang
|
Zhongyu Wei
|
Minlong Peng
|
Mingming Sun
|
Qi Zhang
|
Tao Gui
Findings of the Association for Computational Linguistics: ACL 2023
Task embeddings are task-specific vectors designed to construct a semantic space of tasks, which can be used to predict the most transferable source task for a given target task via the similarity between task embeddings. However, existing methods use optimized parameters and representations as task embeddings, resulting in substantial computational complexity and storage requirements. In this work, we draw inspiration from the operating mechanism of deep neural networks (DNNs) and biological brains, where neuronal activations are sparse and task-specific, and we use the connectivity patterns of neurons as a unique identifier associated with the task. The proposed method learns to assign importance masks for sub-structures of DNNs, and accordingly indicate the task-specific connectivity patterns. In addition to the storage advantages brought by the binary masking mechanism and structured sparsity, the early-bird nature of the sparse optimization process can deliver an efficient computation advantage. Experiments show that our method consistently outperforms other baselines in predicting inter-task transferability across data regimes and transfer settings, while keeping high efficiency in computation and storage.
pdf
bib
abs
A Graph-Guided Reasoning Approach for Open-ended Commonsense Question Answering
Zhen Han
|
Yue Feng
|
Mingming Sun
Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning
Recently, end-to-end trained models for multiple-choice commonsense question answering (QA) have delivered promising results. However, such question-answering systems cannot be directly applied in real-world scenarios where answer candidates are not provided. Hence, a new benchmark challenge set for open-ended commonsense reasoning (OpenCSR) has been recently released, which contains natural science questions without any predefined choices. On the OpenCSR challenge set, many questions require implicit multi-hop reasoning and have a large decision space, reflecting the difficult nature of this task. Existing work on OpenCSR sorely focuses on improving the retrieval process, which extracts relevant factual sentences from a textual knowledge base, leaving the important and non-trivial reasoning task outside the scope. In this work, we extend the scope to include a reasoner that constructs a question-dependent open knowledge graph based on retrieved supporting facts and employs a sequential subgraph reasoning process to predict the answer. The subgraph can be seen as a concise and compact graphical explanation of the prediction. Experiments on two OpenCSR datasets show that the proposed model achieves great performance on benchmark OpenCSR datasets.
pdf
bib
abs
Actively Supervised Clustering for Open Relation Extraction
Jun Zhao
|
Yongxin Zhang
|
Qi Zhang
|
Tao Gui
|
Zhongyu Wei
|
Minlong Peng
|
Mingming Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Current clustering-based Open Relation Extraction (OpenRE) methods usually adopt a two-stage pipeline, which simultaneously learns relation representations and assignments in the first stage, then manually labels relation for each cluster. However, unsupervised objectives struggle to explicitly optimize clusters to align with relational semantics, and the number of clusters K has to be supplied in advance. In this paper, we present a novel setting, named actively supervised clustering for OpenRE. Our insight lies in that clustering learning and relation labeling can be performed simultaneously, which provides the necessary guidance for clustering without a significant increase in human effort. Along with this setting, we propose an active labeling strategy tailored for clustering. Instead of only focusing on improving the clustering of relations that have been discovered, our strategy is encouraged to discover new relations through diversity regularization. This is particularly beneficial for long-tail relations in the real world. Experimental results show that our method is able to discover almost all relational clusters in the data and improve the SOTA methods by 13.8% and 10.6%, on two datasets respectively.
pdf
bib
abs
RE-Matching: A Fine-Grained Semantic Matching Method for Zero-Shot Relation Extraction
Jun Zhao
|
WenYu Zhan
|
Xin Zhao
|
Qi Zhang
|
Tao Gui
|
Zhongyu Wei
|
Junzhe Wang
|
Minlong Peng
|
Mingming Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Semantic matching is a mainstream paradigm of zero-shot relation extraction, which matches a given input with a corresponding label description. The entities in the input should exactly match their hypernyms in the description, while the irrelevant contexts should be ignored when matching. However, general matching methods lack explicit modeling of the above matching pattern. In this work, we propose a fine-grained semantic matching method tailored for zero-shot relation extraction. Guided by the above matching pattern, we decompose the sentence-level similarity score into the entity matching score and context matching score. Considering that not all contextual words contribute equally to the relation semantics, we design a context distillation module to reduce the negative impact of irrelevant components on context matching. Experimental results show that our method achieves higher matching accuracy and more than 10 times faster inference speed, compared with the state-of-the-art methods.
2022
pdf
bib
abs
Multi-Hop Open-Domain Question Answering over Structured and Unstructured Knowledge
Yue Feng
|
Zhen Han
|
Mingming Sun
|
Ping Li
Findings of the Association for Computational Linguistics: NAACL 2022
Open-domain question answering systems need to answer question of our interests with structured and unstructured information. However, existing approaches only select one source to generate answer or only conduct reasoning on structured information. In this paper, we pro- pose a Document-Entity Heterogeneous Graph Network, referred to as DEHG, to effectively integrate different sources of information, and conduct reasoning on heterogeneous information. DEHG employs a graph constructor to integrate structured and unstructured information, a context encoder to represent nodes and question, a heterogeneous information reasoning layer to conduct multi-hop reasoning on both information sources, and an answer decoder to generate answers for the question. Experimental results on HybirdQA dataset show that DEHG outperforms the state-of-the-art methods.
pdf
bib
abs
Cross-Lingual Cross-Modal Consolidation for Effective Multilingual Video Corpus Moment Retrieval
Jiaheng Liu
|
Tan Yu
|
Hanyu Peng
|
Mingming Sun
|
Ping Li
Findings of the Association for Computational Linguistics: NAACL 2022
Existing multilingual video corpus moment retrieval (mVCMR) methods are mainly based on a two-stream structure. The visual stream utilizes the visual content in the video to estimate the query-visual similarity, and the subtitle stream exploits the query-subtitle similarity. The final query-video similarity ensembles similarities from two streams. In our work, we pro- pose a simple and effective strategy termed as Cross-lingual Cross-modal Consolidation (C3 ) to improve mVCMR accuracy. We adopt the ensemble similarity as the teacher to guide the training of each stream, leading to a more powerful ensemble similarity. Meanwhile, we use the teacher for a specific language to guide the student for another language to exploit the complementary knowledge across languages. Ex- tensive experiments on mTVR dataset demonstrate the effectiveness of our C3 method.
pdf
bib
abs
OIE@OIA: an Adaptable and Efficient Open Information Extraction Framework
Xin Wang
|
Minlong Peng
|
Mingming Sun
|
Ping Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Different Open Information Extraction (OIE) tasks require different types of information, so the OIE field requires strong adaptability of OIE algorithms to meet different task requirements. This paper discusses the adaptability problem in existing OIE systems and designs a new adaptable and efficient OIE system - OIE@OIA as a solution. OIE@OIA follows the methodology of Open Information eXpression (OIX): parsing a sentence to an Open Information Annotation (OIA) Graph and then adapting the OIA graph to different OIE tasks with simple rules. As the core of our OIE@OIA system, we implement an end-to-end OIA generator by annotating a dataset (we make it open available) and designing an efficient learning algorithm for the complex OIA graph. We easily adapt the OIE@OIA system to accomplish three popular OIE tasks. The experimental show that our OIE@OIA achieves new SOTA performances on these tasks, showing the great adaptability of our OIE@OIA system. Furthermore, compared to other end-to-end OIE baselines that need millions of samples for training, our OIE@OIA needs much fewer training samples (12K), showing a significant advantage in terms of efficiency.
2020
pdf
bib
abs
Learning Interpretable Relationships between Entities, Relations and Concepts via Bayesian Structure Learning on Open Domain Facts
Jingyuan Zhang
|
Mingming Sun
|
Yue Feng
|
Ping Li
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Concept graphs are created as universal taxonomies for text understanding in the open-domain knowledge. The nodes in concept graphs include both entities and concepts. The edges are from entities to concepts, showing that an entity is an instance of a concept. In this paper, we propose the task of learning interpretable relationships from open-domain facts to enrich and refine concept graphs. The Bayesian network structures are learned from open-domain facts as the interpretable relationships between relations of facts and concepts of entities. We conduct extensive experiments on public English and Chinese datasets. Compared to the state-of-the-art methods, the learned network structures help improving the identification of concepts for entities based on the relations of entities on both datasets.
pdf
bib
abs
A Predicate-Function-Argument Annotation of Natural Language for Open-Domain Information eXpression
Mingming Sun
|
Wenyue Hua
|
Zoey Liu
|
Xin Wang
|
Kangjie Zheng
|
Ping Li
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Existing OIE (Open Information Extraction) algorithms are independent of each other such that there exist lots of redundant works; the featured strategies are not reusable and not adaptive to new tasks. This paper proposes a new pipeline to build OIE systems, where an Open-domain Information eXpression (OIX) task is proposed to provide a platform for all OIE strategies. The OIX is an OIE friendly expression of a sentence without information loss. The generation procedure of OIX contains shared works of OIE algorithms so that OIE strategies can be developed on the platform of OIX as inference operations focusing on more critical problems. Based on the same platform of OIX, the OIE strategies are reusable, and people can select a set of strategies to assemble their algorithm for a specific task so that the adaptability may be significantly increased. This paper focuses on the task of OIX and propose a solution – Open Information Annotation (OIA). OIA is a predicate-function-argument annotation for sentences. We label a data set of sentence-OIA pairs and propose a dependency-based rule system to generate OIA annotations from sentences. The evaluation results reveal that learning the OIA from a sentence is a challenge owing to the complexity of natural language sentences, and it is worthy of attracting more attention from the research community.
2019
pdf
bib
abs
Reinforced Product Metadata Selection for Helpfulness Assessment of Customer Reviews
Miao Fan
|
Chao Feng
|
Mingming Sun
|
Ping Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
To automatically assess the helpfulness of a customer review online, conventional approaches generally acquire various linguistic and neural embedding features solely from the textual content of the review itself as the evidence. We, however, find out that a helpful review is largely concerned with the metadata (such as the name, the brand, the category, etc.) of its target product. It leaves us with a challenge of how to choose the correct key-value product metadata to help appraise the helpfulness of free-text reviews more precisely. To address this problem, we propose a novel framework composed of two mutual-benefit modules. Given a product, a selector (agent) learns from both the keys in the product metadata and one of its reviews to take an action that selects the correct value, and a successive predictor (network) makes the free-text review attend to this value to obtain better neural representations for helpfulness assessment. The predictor is directly optimized by SGD with the loss of helpfulness prediction, and the selector could be updated via policy gradient rewarded with the performance of the predictor. We use two real-world datasets from Amazon.com and Yelp.com, respectively, to compare the performance of our framework with other mainstream methods under two application scenarios: helpfulness identification and regression of customer reviews. Extensive results demonstrate that our framework can achieve state-of-the-art performance with substantial improvements.
2018
pdf
bib
abs
Logician and Orator: Learning from the Duality between Language and Knowledge in Open Domain
Mingming Sun
|
Xu Li
|
Ping Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
We propose the task of Open-Domain Information Narration (OIN) as the reverse task of Open Information Extraction (OIE), to implement the dual structure between language and knowledge in the open domain. Then, we develop an agent, called Orator, to accomplish the OIN task, and assemble the Orator and the recently proposed OIE agent — Logician into a dual system to utilize the duality structure with a reinforcement learning paradigm. Experimental results reveal the dual structure between OIE and OIN tasks helps to build better both OIE agents and OIN agents.