2024
pdf
bib
abs
Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning
Kung-Hsiang Huang
|
Mingyang Zhou
|
Hou Pong Chan
|
Yi Fung
|
Zhenhailong Wang
|
Lingyu Zhang
|
Shih-Fu Chang
|
Heng Ji
Findings of the Association for Computational Linguistics ACL 2024
Advances in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual contents. These powerful models are known for producing texts that are factually inconsistent with the visual input. While some efforts mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured visuals, such as charts, has not received as much scrutiny. This work introduces a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns in captions generated by various models, ultimately forming the foundation of a dataset, CHOCOLATE. Our analysis reveals that even advanced models like GPT-4V frequently produce captions laced with factual inaccuracies. To combat this, we establish the task of Chart Caption Factual Error Correction and introduce CHARTVE, a visual entailment model that outperforms current LVLMs in evaluating caption factuality. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation metric, and demonstrating an effective approach to ensuring the factuality of generated chart captions. The code and data as well as the continuously updated benchmark can be found at: https://khuangaf.github.io/CHOCOLATE/.
pdf
bib
abs
Aligning Large Language Models for Controllable Recommendations
Wensheng Lu
|
Jianxun Lian
|
Wei Zhang
|
Guanghua Li
|
Mingyang Zhou
|
Hao Liao
|
Xing Xie
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Inspired by the exceptional general intelligence of Large Language Models (LLMs), researchers have begun to explore their application in pioneering the next generation of recommender systems — systems that are conversational, explainable, and controllable. However, existing literature primarily concentrates on integrating domain-specific knowledge into LLMs to enhance accuracy using a fixed task template, often overlooking the diversity of recommendation tasks and the ability of LLMs to follow recommendation-specific instructions. To address this gap, we first introduce a collection of supervised learning tasks, augmented with labels derived from a conventional recommender model, aimed at explicitly improving LLMs’ proficiency in adhering to recommendation-specific instructions. Next, we propose a reinforcement learning-based alignment procedure to enhance LLMs’ generalization ability. Extensive experiments on two real-world datasets demonstrate that our approach significantly improves the capability of LLMs to respond to instructions within recommender systems, reducing formatting errors while maintaining a high level of accuracy.
2023
pdf
bib
abs
Explainable Recommendation with Personalized Review Retrieval and Aspect Learning
Hao Cheng
|
Shuo Wang
|
Wensheng Lu
|
Wei Zhang
|
Mingyang Zhou
|
Kezhong Lu
|
Hao Liao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Explainable recommendation is a technique that combines prediction and generation tasks to produce more persuasive results. Among these tasks, textual generation demands large amounts of data to achieve satisfactory accuracy. However, historical user reviews of items are often insufficient, making it challenging to ensure the precision of generated explanation text. To address this issue, we propose a novel model, ERRA (Explainable Recommendation by personalized Review retrieval and Aspect learning). With retrieval enhancement, ERRA can obtain additional information from the training sets. With this additional information, we can generate more accurate and informative explanations. Furthermore, to better capture users’ preferences, we incorporate an aspect enhancement component into our model. By selecting the top-n aspects that users are most concerned about for different items, we can model user representation with more relevant details, making the explanation more persuasive. To verify the effectiveness of our model, extensive experiments on three datasets show that our model outperforms state-of-the-art baselines (for example, 3.4% improvement in prediction and 15.8% improvement in explanation for TripAdvisor).
pdf
bib
abs
Enhanced Chart Understanding via Visual Language Pre-training on Plot Table Pairs
Mingyang Zhou
|
Yi Fung
|
Long Chen
|
Christopher Thomas
|
Heng Ji
|
Shih-Fu Chang
Findings of the Association for Computational Linguistics: ACL 2023
Building cross-model intelligence that can understand charts and communicate the salient information hidden behind them is an appealing challenge in the vision and language (V+L) community. The capability to uncover the underlined table data of chart figures is a critical key to automatic chart understanding. We introduce ChartT5, a V+L model that learns how to interpret table information from chart images via cross-modal pre-training on plot table pairs. Specifically, we propose two novel pre-training objectives: Masked Header Prediction (MHP) and Masked Value Prediction (MVP) to facilitate the model with different skills to interpret the table information. We have conducted extensive experiments on chart question answering and chart summarization to verify the effectiveness of the proposed pre-training strategies. In particular, on the ChartQA benchmark, our ChartT5 outperforms the state-of-the-art non-pretraining methods by over 8% performance gains.
2022
pdf
bib
abs
A Joint Learning Framework for Restaurant Survival Prediction and Explanation
Xin Li
|
Xiaojie Zhang
|
Peng JiaHao
|
Rui Mao
|
Mingyang Zhou
|
Xing Xie
|
Hao Liao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
The bloom of the Internet and the recent breakthroughs in deep learning techniques open a new door to AI for E-commence, with a trend of evolving from using a few financial factors such as liquidity and profitability to using more advanced AI techniques to process complex and multi-modal data. In this paper, we tackle the practical problem of restaurant survival prediction. We argue that traditional methods ignore two essential respects, which are very helpful for the task: 1) modeling customer reviews and 2) jointly considering status prediction and result explanation. Thus, we propose a novel joint learning framework for explainable restaurant survival prediction based on the multi-modal data of user-restaurant interactions and users’ textual reviews. Moreover, we design a graph neural network to capture the high-order interactions and design a co-attention mechanism to capture the most informative and meaningful signal from noisy textual reviews. Our results on two datasets show a significant and consistent improvement over the SOTA techniques (average 6.8% improvement in prediction and 45.3% improvement in explanation).
pdf
bib
abs
Focus! Relevant and Sufficient Context Selection for News Image Captioning
Mingyang Zhou
|
Grace Luo
|
Anna Rohrbach
|
Zhou Yu
Findings of the Association for Computational Linguistics: EMNLP 2022
News Image Captioning requires describing an image by leveraging additional context derived from a news article. Previous works only coarsely leverage the article to extract the necessary context, which makes it challenging for models to identify relevant events and named entities. In our paper, we first demonstrate that by combining more fine-grained context that captures the key named entities (obtained via an oracle) and the global context that summarizes the news, we can dramatically improve the model’s ability to generate accurate news captions. This begs the question, how to automatically extract such key entities from an image? We propose to use pre-trained vision and language retrieval model CLIP to localize the visually grounded entities in the news article, and then capture the non-visual entities via a open relation extraction model. Our experiments demonstrate that by simply selecting better context from the article, we can significantly improve the performance of existing models and achieve the new state-of-the-art performance on multiple benchmarks.
2019
pdf
bib
abs
Building Task-Oriented Visual Dialog Systems Through Alternative Optimization Between Dialog Policy and Language Generation
Mingyang Zhou
|
Josh Arnold
|
Zhou Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Reinforcement learning (RL) is an effective approach to learn an optimal dialog policy for task-oriented visual dialog systems. A common practice is to apply RL on a neural sequence-to-sequence(seq2seq) framework with the action space being the output vocabulary in the decoder. However, it is difficult to design a reward function that can achieve a balance between learning an effective policy and generating a natural dialog response. This paper proposes a novel framework that alternatively trains a RL policy for image guessing and a supervised seq2seq model to improve dialog generation quality. We evaluate our framework on the GuessWhich task and the framework achieves the state-of-the-art performance in both task completion and dialog quality.
pdf
bib
abs
Gunrock: A Social Bot for Complex and Engaging Long Conversations
Dian Yu
|
Michelle Cohn
|
Yi Mang Yang
|
Chun Yen Chen
|
Weiming Wen
|
Jiaping Zhang
|
Mingyang Zhou
|
Kevin Jesse
|
Austin Chau
|
Antara Bhowmick
|
Shreenath Iyer
|
Giritheja Sreenivasulu
|
Sam Davidson
|
Ashwin Bhandare
|
Zhou Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations
Gunrock is the winner of the 2018 Amazon Alexa Prize, as evaluated by coherence and engagement from both real users and Amazon-selected expert conversationalists. We focus on understanding complex sentences and having in-depth conversations in open domains. In this paper, we introduce some innovative system designs and related validation analysis. Overall, we found that users produce longer sentences to Gunrock, which are directly related to users’ engagement (e.g., ratings, number of turns). Additionally, users’ backstory queries about Gunrock are positively correlated to user satisfaction. Finally, we found dialog flows that interleave facts and personal opinions and stories lead to better user satisfaction.
2018
pdf
bib
abs
A Visual Attention Grounding Neural Model for Multimodal Machine Translation
Mingyang Zhou
|
Runxiang Cheng
|
Yong Jae Lee
|
Zhou Yu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
We introduce a novel multimodal machine translation model that utilizes parallel visual and textual information. Our model jointly optimizes the learning of a shared visual-language embedding and a translator. The model leverages a visual attention grounding mechanism that links the visual semantics with the corresponding textual semantics. Our approach achieves competitive state-of-the-art results on the Multi30K and the Ambiguous COCO datasets. We also collected a new multilingual multimodal product description dataset to simulate a real-world international online shopping scenario. On this dataset, our visual attention grounding model outperforms other methods by a large margin.