2025
pdf
bib
abs
Exploring Concept Depth: How Large Language Models Acquire Knowledge and Concept at Different Layers?
Mingyu Jin
|
Qinkai Yu
|
Jingyuan Huang
|
Qingcheng Zeng
|
Zhenting Wang
|
Wenyue Hua
|
Haiyan Zhao
|
Kai Mei
|
Yanda Meng
|
Kaize Ding
|
Fan Yang
|
Mengnan Du
|
Yongfeng Zhang
Proceedings of the 31st International Conference on Computational Linguistics
Large language models (LLMs) have shown remarkable performances across a wide range of tasks. However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood. In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of “Concept Depth” to suggest that more complex concepts are typically acquired in deeper layers. Specifically, we categorize concepts based on their level of abstraction, defining them in the order of increasing complexity within factual, emotional, and inferential tasks. We conduct extensive probing experiments using layer-wise representations across various LLM families (Gemma, LLaMA, Qwen) on various datasets spanning the three domains of tasks. Our findings reveal that models could efficiently conduct probing for simpler tasks in shallow layers, and more complex tasks typically necessitate deeper layers for accurate understanding. Additionally, we examine how external factors, such as adding noise to the input and quantizing the model weights, might affect layer-wise representations. Our findings suggest that these factors can impede the development of a conceptual understanding of LLMs until deeper layers are explored. We hope that our proposed concept and experimental insights will enhance the understanding of the mechanisms underlying LLMs. Our codes are available at https://github.com/Luckfort/CD.
pdf
bib
abs
Exploring Fine-Grained Human Motion Video Captioning
Bingchan Zhao
|
Xinyi Liu
|
Zhuocheng Yu
|
Tongchen Yang
|
Yifan Song
|
Mingyu Jin
|
Sujian Li
|
Yizhou Wang
Proceedings of the 31st International Conference on Computational Linguistics
Detailed descriptions of human motion are crucial for effective fitness training, which highlights the importance of research in fine-grained human motion video captioning. Existing video captioning models often fail to capture the nuanced semantics of videos, resulting in the generated descriptions that are coarse and lack details, especially when depicting human motions. To benchmark the Body Fitness Training scenario, in this paper, we construct a fine-grained human motion video captioning dataset named BoFiT and design a state-of-the-art baseline model named BoFiT-Gen (Body Fitness Training Text Generation). BoFiT-Gen makes use of computer vision techniques to extract angular representations of human motions from videos and LLMs to generate fine-grained descriptions of human motions via prompting. Results show that BoFiT-Gen outperforms previous methods on comprehensive metrics. We aim for this dataset to serve as a useful evaluation set for visio-linguistic models and drive further progress in this field. Our dataset is released at https://github.com/colmon46/bofit.
2024
pdf
bib
abs
Adaptive Axes: A Pipeline for In-domain Social Stereotype Analysis
Qingcheng Zeng
|
Mingyu Jin
|
Rob Voigt
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Prior work has explored the possibility of using the semantic information obtained from embedding representations to quantify social stereotypes, leveraging techniques such as word embeddings combined with a list of traits (Garg et al., 2018; Charlesworth et al., 2022) or semantic axes (An et al., 2018; Lucy et al., 2022). However, these approaches have struggled to fully capture the variability in stereotypes across different conceptual domains for the same social group (e.g., black in science, health, and art), in part because the identity of a word and the associations formed during pre-training can dominate its contextual representation (Field and Tsvetkov, 2019). This study explores the ability to recover stereotypes from the contexts surrounding targeted entities by utilizing state-of-the-art text embedding models and adaptive semantic axes enhanced by large language models (LLMs). Our results indicate that the proposed pipeline not only surpasses token-based methods in capturing in-domain framing but also effectively tracks stereotypes over time and along domain-specific semantic axes for in-domain texts. Our research highlights the potential of employing text embedding models to achieve a deeper understanding of nuanced social stereotypes.
pdf
bib
abs
BattleAgent: Multi-modal Dynamic Emulation on Historical Battles to Complement Historical Analysis
Shuhang Lin
|
Wenyue Hua
|
Lingyao Li
|
Che-Jui Chang
|
Lizhou Fan
|
Jianchao Ji
|
Hang Hua
|
Mingyu Jin
|
Jiebo Luo
|
Yongfeng Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
This paper presents
BattleAgent, a detailed emulation demonstration system that combines the Large Vision-Language Model (VLM) and Multi-Agent System (MAS). This novel system aims to emulate complex dynamic interactions among multiple agents, as well as between agents and their environments, over a period of time. The emulation showcases the current capabilities of agents, featuring fine-grained multi-modal interactions between agents and landscapes. It develops customizable agent structures to meet specific situational requirements, for example, a variety of battle-related activities like scouting and trench digging. These components collaborate to recreate historical events in a lively and comprehensive manner. This methodology holds the potential to substantially improve visualization of historical events and deepen our understanding of historical events especially from the perspective of decision making. The data and code for this project are accessible at
https://github.com/agiresearch/battleagent and the demo is accessible at
https://drive.google.com/file/d/1I5B3KWiYCSSP1uMiPGNmXlTmild-MzRJ/view?usp=sharing.
pdf
bib
abs
The Impact of Reasoning Step Length on Large Language Models
Mingyu Jin
|
Qinkai Yu
|
Dong Shu
|
Haiyan Zhao
|
Wenyue Hua
|
Yanda Meng
|
Yongfeng Zhang
|
Mengnan Du
Findings of the Association for Computational Linguistics: ACL 2024
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs’ reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs’ potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.
pdf
bib
abs
TrustAgent: Towards Safe and Trustworthy LLM-based Agents
Wenyue Hua
|
Xianjun Yang
|
Mingyu Jin
|
Zelong Li
|
Wei Cheng
|
Ruixiang Tang
|
Yongfeng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
The rise of LLM-based agents shows great potential to revolutionize task planning, capturing significant attention. Given that these agents will be integrated into high-stake domains, ensuring their reliability and safety is crucial. This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a particular focus on improving the LLM-based agent safety. The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection. Our experimental results demonstrate that the proposed framework can effectively enhance an LLM agent’s safety across multiple domains by identifying and mitigating potential dangers during the planning. Further analysis reveals that the framework not only improves safety but also enhances the helpfulness of the agent. Additionally, we highlight the importance of the LLM reasoning ability in adhering to the Constitution. This paper sheds light on how to ensure the safe integration of LLM-based agents into human-centric environments. Data and code are available at
https://anonymous.4open.science/r/TrustAgent-06DC.