Minseok Choi


2024

pdf bib
Protecting Privacy Through Approximating Optimal Parameters for Sequence Unlearning in Language Models
Dohyun Lee | Daniel Rim | Minseok Choi | Jaegul Choo
Findings of the Association for Computational Linguistics ACL 2024

Although language models (LMs) demonstrate exceptional capabilities on various tasks, they are potentially vulnerable to extraction attacks, which represent a significant privacy risk.To mitigate the privacy concerns of LMs, machine unlearning has emerged as an important research area, which is utilized to induce the LM to selectively forget about some of its training data.While completely retraining the model will guarantee successful unlearning and privacy assurance, it is impractical for LMs, as it would be time-consuming and resource-intensive.Prior works efficiently unlearn the target token sequences, but upon subsequent iterations, the LM displays significant degradation in performance.In this work, we propose Privacy Protection via Optimal Parameters (POP), a novel unlearning method that effectively forgets the target token sequences from the pretrained LM by applying optimal gradient updates to the parameters.Inspired by the gradient derivation of complete retraining, we approximate the optimal training objective that successfully unlearns the target sequence while retaining the knowledge from the rest of the training data.Experimental results demonstrate that POP exhibits remarkable retention performance post-unlearning across 9 classification and 4 dialogue benchmarks, outperforming the state-of-the-art by a large margin.Furthermore, we introduce Remnant Memorization Accuracy that quantifies privacy risks based on token likelihood and validate its effectiveness through both qualitative and quantitative analyses.

2023

pdf bib
HistRED: A Historical Document-Level Relation Extraction Dataset
Soyoung Yang | Minseok Choi | Youngwoo Cho | Jaegul Choo
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the extensive applications of relation extraction (RE) tasks in various domains, little has been explored in the historical context, which contains promising data across hundreds and thousands of years. To promote the historical RE research, we present HistRED constructed from Yeonhaengnok. Yeonhaengnok is a collection of records originally written in Hanja, the classical Chinese writing, which has later been translated into Korean. HistRED provides bilingual annotations such that RE can be performed on Korean and Hanja texts. In addition, HistRED supports various self-contained subtexts with different lengths, from a sentence level to a document level, supporting diverse context settings for researchers to evaluate the robustness of their RE models. To demonstrate the usefulness of our dataset, we propose a bilingual RE model that leverages both Korean and Hanja contexts to predict relations between entities. Our model outperforms monolingual baselines on HistRED, showing that employing multiple language contexts supplements the RE predictions. The dataset is publicly available at: https://huggingface.co/datasets/Soyoung/HistRED under CC BY-NC-ND 4.0 license.

pdf bib
SimCKP: Simple Contrastive Learning of Keyphrase Representations
Minseok Choi | Chaeheon Gwak | Seho Kim | Si Kim | Jaegul Choo
Findings of the Association for Computational Linguistics: EMNLP 2023

Keyphrase generation (KG) aims to generate a set of summarizing words or phrases given a source document, while keyphrase extraction (KE) aims to identify them from the text. Because the search space is much smaller in KE, it is often combined with KG to predict keyphrases that may or may not exist in the corresponding document. However, current unified approaches adopt sequence labeling and maximization-based generation that primarily operate at a token level, falling short in observing and scoring keyphrases as a whole. In this work, we propose SimCKP, a simple contrastive learning framework that consists of two stages: 1) An extractor-generator that extracts keyphrases by learning context-aware phrase-level representations in a contrastive manner while also generating keyphrases that do not appear in the document; 2) A reranker that adapts scores for each generated phrase by likewise aligning their representations with the corresponding document. Experimental results on multiple benchmark datasets demonstrate the effectiveness of our proposed approach, which outperforms the state-of-the-art models by a significant margin.

pdf bib
PRiSM: Enhancing Low-Resource Document-Level Relation Extraction with Relation-Aware Score Calibration
Minseok Choi | Hyesu Lim | Jaegul Choo
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)

2022

pdf bib
Rethinking Style Transformer with Energy-based Interpretation: Adversarial Unsupervised Style Transfer using a Pretrained Model
Hojun Cho | Dohee Kim | Seungwoo Ryu | ChaeHun Park | Hyungjong Noh | Jeong-in Hwang | Minseok Choi | Edward Choi | Jaegul Choo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Style control, content preservation, and fluency determine the quality of text style transfer models. To train on a nonparallel corpus, several existing approaches aim to deceive the style discriminator with an adversarial loss. However, adversarial training significantly degrades fluency compared to the other two metrics. In this work, we explain this phenomenon using energy-based interpretation, and leverage a pretrained language model to improve fluency. Specifically, we propose a novel approach which applies the pretrained language model to the text style transfer framework by restructuring the discriminator and the model itself, allowing the generator and the discriminator to also take advantage of the power of the pretrained model. We evaluated our model on three public benchmarks GYAFC, Amazon, and Yelp and achieved state-of-the-art performance on the overall metrics.