Mohammed Saidul Islam


2024

pdf bib
BenLLM-Eval: A Comprehensive Evaluation into the Potentials and Pitfalls of Large Language Models on Bengali NLP
Mohsinul Kabir | Mohammed Saidul Islam | Md Tahmid Rahman Laskar | Mir Tafseer Nayeem | M Saiful Bari | Enamul Hoque
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large Language Models (LLMs) have emerged as one of the most important breakthroughs in natural language processing (NLP) for their impressive skills in language generation and other language-specific tasks. Though LLMs have been evaluated in various tasks, mostly in English, they have not yet undergone thorough evaluation in under-resourced languages such as Bengali (Bangla). To this end, this paper introduces BenLLM-Eval, which consists of a comprehensive evaluation of LLMs to benchmark their performance in the low-resourced Bangla language. In this regard, we select various important and diverse Bangla NLP tasks, such as text summarization, question answering, paraphrasing, natural language inference, text classification, and sentiment analysis for zero-shot evaluation of popular LLMs, namely, ChatGPT, LLaMA-2, and Claude-2. Our experimental results demonstrate that while in some Bangla NLP tasks, zero-shot LLMs could achieve performance on par, or even better than current SOTA fine-tuned models; in most tasks, their performance is quite poor (with the performance of open-source LLMs like LLaMA-2 being significantly bad) in comparison to the current SOTA results. Therefore, it calls for further efforts to develop a better understanding of LLMs in low-resource languages like Bangla.

2022

pdf bib
BanglaRQA: A Benchmark Dataset for Under-resourced Bangla Language Reading Comprehension-based Question Answering with Diverse Question-Answer Types
Syed Mohammed Sartaj Ekram | Adham Arik Rahman | Md. Sajid Altaf | Mohammed Saidul Islam | Mehrab Mustafy Rahman | Md Mezbaur Rahman | Md Azam Hossain | Abu Raihan Mostofa Kamal
Findings of the Association for Computational Linguistics: EMNLP 2022

High-resource languages, such as English, have access to a plethora of datasets with various question-answer types resembling real-world reading comprehension. However, there is a severe lack of diverse and comprehensive question-answering datasets in under-resourced languages like Bangla. The ones available are either translated versions of English datasets with a niche answer format or created by human annotations focusing on a specific domain, question type, or answer type. To address these limitations, this paper introduces BanglaRQA, a reading comprehension-based Bangla question-answering dataset with various question-answer types. BanglaRQA consists of 3,000 context passages and 14,889 question-answer pairs created from those passages. The dataset comprises answerable and unanswerable questions covering four unique categories of questions and three types of answers. In addition, this paper also implemented four different Transformer models for question-answering on the proposed dataset. The best-performing model achieved an overall 62.42% EM and 78.11% F1 score. However, detailed analyses showed that the performance varies across question-answer types, leaving room for substantial improvement of the model performance. Furthermore, we demonstrated the effectiveness of BanglaRQA as a training resource by showing strong results on the bn_squad dataset. Therefore, BanglaRQA has the potential to contribute to the advancement of future research by enhancing the capability of language models. The dataset and codes are available at https://github.com/sartajekram419/BanglaRQA