Najoung Kim


2024

pdf bib
Reasoning or Reciting? Exploring the Capabilities and Limitations of Language Models Through Counterfactual Tasks
Zhaofeng Wu | Linlu Qiu | Alexis Ross | Ekin Akyürek | Boyuan Chen | Bailin Wang | Najoung Kim | Jacob Andreas | Yoon Kim
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The impressive performance of recent language models across a wide range of tasks suggests that they possess a degree of abstract reasoning skills. Are these skills general and transferable, or specialized to specific tasks seen during pretraining? To disentangle these effects, we propose an evaluation framework based on “counterfactual” task variants that deviate from the default assumptions underlying standard tasks. Across a suite of 11 tasks, we observe nontrivial performance on the counterfactual variants, but nevertheless find that performance substantially and consistently degrades compared to the default conditions. This suggests that while current LMs may possess abstract task-solving skills to an extent, they often also rely on narrow, non-transferable procedures for task-solving. These results motivate a more careful interpretation of language model performance that teases apart these aspects.

2023

pdf bib
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
Yonatan Belinkov | Sophie Hao | Jaap Jumelet | Najoung Kim | Arya McCarthy | Hosein Mohebbi
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

pdf bib
Entity Tracking in Language Models
Najoung Kim | Sebastian Schuster
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Keeping track of how states of entities change as a text or dialog unfolds is a key prerequisite to discourse understanding. Yet, there have been few systematic investigations into the ability of large language models (LLMs) to track discourse entities. In this work, we present a task probing to what extent a language model can infer the final state of an entity given an English description of the initial state and a series of state-changing operations. We use this task to first investigate whether Flan-T5, GPT-3 and GPT-3.5 can track the state of entities, and find that only GPT-3.5 models, which have been pretrained on large amounts of code, exhibit this ability. We then investigate whether smaller models pretrained primarily on text can learn to track entities, through finetuning T5 on several training/evaluation splits. While performance degrades for more complex splits, we find that even when evaluated on a different set of entities from training or longer operation sequences, a finetuned model can perform non-trivial entity tracking. Taken together, these results suggest that language models can learn to track entities but pretraining on text corpora alone does not make this capacity surface.

pdf bib
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Mehran Kazemi | Najoung Kim | Deepti Bhatia | Xin Xu | Deepak Ramachandran
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Remarkable progress has been made on automated reasoning with natural text, by using Large Language Models (LLMs) and methods such as Chain-of-Thought prompting and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules, that are simply implemented by few-shot prompted LLM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on two challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.

pdf bib
(QA)2: Question Answering with Questionable Assumptions
Najoung Kim | Phu Mon Htut | Samuel R. Bowman | Jackson Petty
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Naturally occurring information-seeking questions often contain questionable assumptions—assumptions that are false or unverifiable. Questions containing questionable assumptions are challenging because they require a distinct answer strategy that deviates from typical answers for information-seeking questions. For instance, the question “When did Marie Curie discover Uranium?” cannot be answered as a typical “when” question without addressing the false assumption “Marie Curie discovered Uranium”. In this work, we propose (QA)2 (Question Answering with Questionable Assumptions), an open-domain evaluation dataset consisting of naturally occurring search engine queries that may or may not contain questionable assumptions. To be successful on (QA)2, systems must be able to detect questionable assumptions and also be able to produce adequate responses for both typical information-seeking questions and ones with questionable assumptions. Through human rater acceptability on end-to-end QA with (QA)2, we find that current models do struggle with handling questionable assumptions, leaving substantial headroom for progress.

pdf bib
Reconstruction Probing
Najoung Kim | Jatin Khilnani | Alex Warstadt | Abdelrahim Qaddoumi
Findings of the Association for Computational Linguistics: ACL 2023

We propose reconstruction probing, a new analysis method for contextualized representations based on reconstruction probabilities in masked language models (MLMs). This method relies on comparing the reconstruction probabilities of tokens in a given sequence when conditioned on the representation of a single token that has been fully contextualized and when conditioned on only the decontextualized lexical prior of the model. This comparison can be understood as quantifying the contribution of contextualization towards reconstruction—the difference in the reconstruction probabilities can only be attributed to the representational change of the single token induced by contextualization. We apply this analysis to three MLMs and find that contextualization boosts reconstructability of tokens that are close to the token being reconstructed in terms of linear and syntactic distance. Furthermore, we extend our analysis to finer-grained decomposition of contextualized representations, and we find that these boosts are largely attributable to static and positional embeddings at the input layer.

pdf bib
Findings of the 1st Shared Task on Multi-lingual Multi-task Information Retrieval at MRL 2023
Francesco Tinner | David Ifeoluwa Adelani | Chris Emezue | Mammad Hajili | Omer Goldman | Muhammad Farid Adilazuarda | Muhammad Dehan Al Kautsar | Aziza Mirsaidova | Müge Kural | Dylan Massey | Chiamaka Chukwuneke | Chinedu Mbonu | Damilola Oluwaseun Oloyede | Kayode Olaleye | Jonathan Atala | Benjamin A. Ajibade | Saksham Bassi | Rahul Aralikatte | Najoung Kim | Duygu Ataman
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)

pdf bib
SLOG: A Structural Generalization Benchmark for Semantic Parsing
Bingzhi Li | Lucia Donatelli | Alexander Koller | Tal Linzen | Yuekun Yao | Najoung Kim
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The goal of compositional generalization benchmarks is to evaluate how well models generalize to new complex linguistic expressions. Existing benchmarks often focus on lexical generalization, the interpretation of novel lexical items in syntactic structures familiar from training; structural generalization tasks, where a model needs to interpret syntactic structures that are themselves unfamiliar from training, are often underrepresented, resulting in overly optimistic perceptions of how well models can generalize. We introduce SLOG, a semantic parsing dataset that extends COGS (Kim and Linzen, 2020) with 17 structural generalization cases. In our experiments, the generalization accuracy of Transformer models, including pretrained ones, only reaches 40.6%, while a structure-aware parser only achieves 70.8%. These results are far from the near-perfect accuracy existing models achieve on COGS, demonstrating the role of SLOG in foregrounding the large discrepancy between models’ lexical and structural generalization capacities.

pdf bib
Inverse Scaling Can Become U-Shaped
Jason Wei | Najoung Kim | Yi Tay | Quoc Le
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Scaling up language models has been empirically shown to improve performance on a wide range of downstream tasks. However, if we were to observe worse performance as a function of scale (inverse scaling) on certain tasks, this would indicate that scaling can also encourage behaviors that are misaligned with human preferences. The Inverse Scaling Prize (McKenzie et al. 2023) identified eleven such inverse scaling tasks, evaluated on models of up to 280B parameters and up to 500 zettaFLOPs of training compute. This paper takes a closer look at these inverse scaling tasks. In this paper, we evaluate models of up to 540B parameters, trained on five times more compute than those evaluated in the Inverse Scaling Prize. With this increased range of model sizes and compute, only four out of the eleven tasks remain inverse scaling. Six tasks exhibit U-shaped scaling, where performance decreases up to a certain size, and then increases again up to the largest model evaluated (the one remaining task displays positive scaling). In addition, 1-shot examples and chain-of-thought can help mitigate undesirable scaling patterns even further. U-shaped scaling suggests that the inverse scaling trend observed in McKenzie et al. (2023) may not continue to hold for larger models, which we attribute to the presence of distractor tasks that only sufficiently large models can avoid.

2021

pdf bib
Which Linguist Invented the Lightbulb? Presupposition Verification for Question-Answering
Najoung Kim | Ellie Pavlick | Burcu Karagol Ayan | Deepak Ramachandran
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Many Question-Answering (QA) datasets contain unanswerable questions, but their treatment in QA systems remains primitive. Our analysis of the Natural Questions (Kwiatkowski et al. 2019) dataset reveals that a substantial portion of unanswerable questions (~21%) can be explained based on the presence of unverifiable presuppositions. Through a user preference study, we demonstrate that the oracle behavior of our proposed system—which provides responses based on presupposition failure—is preferred over the oracle behavior of existing QA systems. Then, we present a novel framework for implementing such a system in three steps: presupposition generation, presupposition verification, and explanation generation, reporting progress on each. Finally, we show that a simple modification of adding presuppositions and their verifiability to the input of a competitive end-to-end QA system yields modest gains in QA performance and unanswerability detection, demonstrating the promise of our approach.

pdf bib
Testing for Grammatical Category Abstraction in Neural Language Models
Najoung Kim | Paul Smolensky
Proceedings of the Society for Computation in Linguistics 2021

2020

pdf bib
COGS: A Compositional Generalization Challenge Based on Semantic Interpretation
Najoung Kim | Tal Linzen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Natural language is characterized by compositionality: the meaning of a complex expression is constructed from the meanings of its constituent parts. To facilitate the evaluation of the compositional abilities of language processing architectures, we introduce COGS, a semantic parsing dataset based on a fragment of English. The evaluation portion of COGS contains multiple systematic gaps that can only be addressed by compositional generalization; these include new combinations of familiar syntactic structures, or new combinations of familiar words and familiar structures. In experiments with Transformers and LSTMs, we found that in-distribution accuracy on the COGS test set was near-perfect (96–99%), but generalization accuracy was substantially lower (16–35%) and showed high sensitivity to random seed (+-6–8%). These findings indicate that contemporary standard NLP models are limited in their compositional generalization capacity, and position COGS as a good way to measure progress.

pdf bib
Implicit Discourse Relation Classification: We Need to Talk about Evaluation
Najoung Kim | Song Feng | Chulaka Gunasekara | Luis Lastras
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Implicit relation classification on Penn Discourse TreeBank (PDTB) 2.0 is a common benchmark task for evaluating the understanding of discourse relations. However, the lack of consistency in preprocessing and evaluation poses challenges to fair comparison of results in the literature. In this work, we highlight these inconsistencies and propose an improved evaluation protocol. Paired with this protocol, we report strong baseline results from pretrained sentence encoders, which set the new state-of-the-art for PDTB 2.0. Furthermore, this work is the first to explore fine-grained relation classification on PDTB 3.0. We expect our work to serve as a point of comparison for future work, and also as an initiative to discuss models of larger context and possible data augmentations for downstream transferability.

2019

pdf bib
Probing What Different NLP Tasks Teach Machines about Function Word Comprehension
Najoung Kim | Roma Patel | Adam Poliak | Patrick Xia | Alex Wang | Tom McCoy | Ian Tenney | Alexis Ross | Tal Linzen | Benjamin Van Durme | Samuel R. Bowman | Ellie Pavlick
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)

We introduce a set of nine challenge tasks that test for the understanding of function words. These tasks are created by structurally mutating sentences from existing datasets to target the comprehension of specific types of function words (e.g., prepositions, wh-words). Using these probing tasks, we explore the effects of various pretraining objectives for sentence encoders (e.g., language modeling, CCG supertagging and natural language inference (NLI)) on the learned representations. Our results show that pretraining on CCG—our most syntactic objective—performs the best on average across our probing tasks, suggesting that syntactic knowledge helps function word comprehension. Language modeling also shows strong performance, supporting its widespread use for pretraining state-of-the-art NLP models. Overall, no pretraining objective dominates across the board, and our function word probing tasks highlight several intuitive differences between pretraining objectives, e.g., that NLI helps the comprehension of negation.

pdf bib
Can You Tell Me How to Get Past Sesame Street? Sentence-Level Pretraining Beyond Language Modeling
Alex Wang | Jan Hula | Patrick Xia | Raghavendra Pappagari | R. Thomas McCoy | Roma Patel | Najoung Kim | Ian Tenney | Yinghui Huang | Katherin Yu | Shuning Jin | Berlin Chen | Benjamin Van Durme | Edouard Grave | Ellie Pavlick | Samuel R. Bowman
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Natural language understanding has recently seen a surge of progress with the use of sentence encoders like ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2019) which are pretrained on variants of language modeling. We conduct the first large-scale systematic study of candidate pretraining tasks, comparing 19 different tasks both as alternatives and complements to language modeling. Our primary results support the use language modeling, especially when combined with pretraining on additional labeled-data tasks. However, our results are mixed across pretraining tasks and show some concerning trends: In ELMo’s pretrain-then-freeze paradigm, random baselines are worryingly strong and results vary strikingly across target tasks. In addition, fine-tuning BERT on an intermediate task often negatively impacts downstream transfer. In a more positive trend, we see modest gains from multitask training, suggesting the development of more sophisticated multitask and transfer learning techniques as an avenue for further research.