Large Language Models (LLMs) have exhibited remarkable proficiency across a wide array of NLP tasks. However, the escalation in model size also engenders substantial deployment costs. While few efforts have explored model pruning techniques to reduce the size of LLMs, they mainly center on general or task-specific weights. This leads to suboptimal performance due to lacking specificity on the target domain or generality on different tasks when applied to domain-specific challenges. This work introduces an innovative unstructured dual-pruning methodology, D-Pruner, for domain-specific compression on LLM. It extracts a compressed, domain-specific, and task- agnostic LLM by identifying LLM weights that are pivotal for general capabilities, like linguistic capability and multi-task solving, and domain-specific knowledge. More specifically, we first assess general weight importance by quantifying the error incurred upon their removal with the help of an open-domain calibration dataset. Then, we utilize this general weight importance to refine the training loss, so that it preserves generality when fitting into a specific domain. Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity. Our comprehensive experiments across various tasks in healthcare and legal domains show the effectiveness of D-Pruner in domain-specific compression. Our code is available at https://github.com/psunlpgroup/D-Pruner.
Optical Character Recognition (OCR) is an established task with the objective of identifying the text present in an image. While many off-the-shelf OCR models exist, they are often trained for either scientific (e.g., formulae) or generic printed English text. Extracting text from chemistry publications requires an OCR model that is capable in both realms. Nougat, a recent tool, exhibits strong ability to parse academic documents, but is unable to parse tables in PubMed articles, which comprises a significant part of the academic community and is the focus of this work. To mitigate this gap, we present the Printed English and Chemical Equations (PEaCE) dataset, containing both synthetic and real-world records, and evaluate the efficacy of transformer-based OCR models when trained on this resource. Given that real-world records contain artifacts not present in synthetic records, we propose transformations that mimic such qualities. We perform a suite of experiments to explore the impact of patch size, multi-domain training, and our proposed transformations, ultimately finding that models with a small patch size trained on multiple domains using the proposed transformations yield the best performance. Our dataset and code is available at https://github.com/ZN1010/PEaCE.
People from different social and demographic groups express diverse perspectives and conflicting opinions on a broad set of topics such as product reviews, healthcare, law, and politics. A fair summary should provide a comprehensive coverage of diverse perspectives without underrepresenting certain groups. However, current work in summarization metrics and Large Language Models (LLMs) evaluation has not explored fair abstractive summarization. In this paper, we systematically investigate fair abstractive summarization for user-generated data. We first formally define fairness in abstractive summarization as not underrepresenting perspectives of any groups of people, and we propose four reference-free automatic metrics by measuring the differences between target and source perspectives. We evaluate nine LLMs, including three GPT models, four LLaMA models, PaLM 2, and Claude, on six datasets collected from social media, online reviews, and recorded transcripts. Experiments show that both the model-generated and the human-written reference summaries suffer from low fairness. We conduct a comprehensive analysis of the common factors influencing fairness and propose three simple but effective methods to alleviate unfair summarization. Our dataset and code are available at https://github.com/psunlpgroup/FairSumm.
Summaries of medical text shall be faithful by being consistent and factual with source inputs, which is an important but understudied topic for safety and efficiency in healthcare. In this paper, we investigate and improve faithfulness in summarization on a broad range of medical summarization tasks. Our investigation reveals that current summarization models often produce unfaithful outputs for medical input text. We then introduce FaMeSumm, a framework to improve faithfulness by fine-tuning pre-trained language models based on medical knowledge. FaMeSumm performs contrastive learning on designed sets of faithful and unfaithful summaries, and it incorporates medical terms and their contexts to encourage faithful generation of medical terms. We conduct comprehensive experiments on three datasets in two languages: health question and radiology report summarization datasets in English, and a patient-doctor dialogue dataset in Chinese. Results demonstrate that FaMeSumm is flexible and effective by delivering consistent improvements over mainstream language models such as BART, T5, mT5, and PEGASUS, yielding state-of-the-art performances on metrics for faithfulness and general quality. Human evaluation by doctors also shows that FaMeSumm generates more faithful outputs. Our code is available at https://github.com/psunlpgroup/FaMeSumm.
Formal documents often are organized into sections of text, each with a title, and extracting this structure remains an under-explored aspect of natural language processing. This iterative title-text structure is valuable data for building models for headline generation and section title generation, but there is no corpus that contains web documents annotated with titles and prose texts. Therefore, we propose the first title-text dataset on web documents that incorporates a wide variety of domains to facilitate downstream training. We also introduce STAPI (Section Title And Prose text Identifier), a two-step system for labeling section titles and prose text in HTML documents. To filter out unrelated content like document footers, its first step involves a filter that reads HTML documents and proposes a set of textual candidates. In the second step, a typographic classifier takes the candidates from the filter and categorizes each one into one of the three pre-defined classes (title, prose text, and miscellany). We show that STAPI significantly outperforms two baseline models in terms of title-text identification. We release our dataset along with a web application to facilitate supervised and semi-supervised training in this domain.