We introduce Ghostbuster, a state-of-the-art system for detecting AI-generated text.Our method works by passing documents through a series of weaker language models, running a structured search over possible combinations of their features, and then training a classifier on the selected features to predict whether documents are AI-generated.Crucially, Ghostbuster does not require access to token probabilities from the target model, making it useful for detecting text generated by black-box or unknown models.In conjunction with our model, we release three new datasets of human- and AI-generated text as detection benchmarks in the domains of student essays, creative writing, and news articles. We compare Ghostbuster to several existing detectors, including DetectGPT and GPTZero, as well as a new RoBERTa baseline. Ghostbuster achieves 99.0 F1 when evaluated across domains, which is 5.9 F1 higher than the best preexisting model. It also outperforms all previous approaches in generalization across writing domains (+7.5 F1), prompting strategies (+2.1 F1), and language models (+4.4 F1). We also analyze our system’s robustness to a variety of perturbations and paraphrasing attacks, and evaluate its performance on documents by non-native English speakers.
We present a state-of-the-art neural approach to the unsupervised reconstruction of ancient word forms. Previous work in this domain used expectation-maximization to predict simple phonological changes between ancient word forms and their cognates in modern languages. We extend this work with neural models that can capture more complicated phonological and morphological changes. At the same time, we preserve the inductive biases from classical methods by building monotonic alignment constraints into the model and deliberately underfitting during the maximization step. We evaluate our performance on the task of reconstructing Latin from a dataset of cognates across five Romance languages, achieving a notable reduction in edit distance from the target word forms compared to previous methods.
People rely heavily on context to enrich meaning beyond what is literally said, enabling concise but effective communication. To interact successfully and naturally with people, user-facing artificial intelligence systems will require similar skills in pragmatics: relying on various types of context — from shared linguistic goals and conventions, to the visual and embodied world — to use language effectively. We survey existing grounded settings and pragmatic modeling approaches and analyze how the task goals, environmental contexts, and communicative affordances in each work enrich linguistic meaning. We present recommendations for future grounded task design to naturally elicit pragmatic phenomena, and suggest directions that focus on a broader range of communicative contexts and affordances.
The uniform information density (UID) hypothesis states that humans tend to distribute information roughly evenly across an utterance or discourse. Early evidence in support of the UID hypothesis came from Genzel and Charniak (2002), which proposed an entropy rate constancy principle based on the probability of English text under n-gram language models. We re-evaluate the claims of Genzel and Charniak (2002) with neural language models, failing to find clear evidence in support of entropy rate constancy. We conduct a range of experiments across datasets, model sizes, and languages and discuss implications for the uniform information density hypothesis and linguistic theories of efficient communication more broadly.
We present the Berkeley Crossword Solver, a state-of-the-art approach for automatically solving crossword puzzles. Our system works by generating answer candidates for each crossword clue using neural question answering models and then combines loopy belief propagation with local search to find full puzzle solutions. Compared to existing approaches, our system improves exact puzzle accuracy from 57% to 82% on crosswords from The New York Times and obtains 99.9% letter accuracy on themeless puzzles. Our system also won first place at the top human crossword tournament, which marks the first time that a computer program has surpassed human performance at this event. To facilitate research on question answering and crossword solving, we analyze our system’s remaining errors and release a dataset of over six million question-answer pairs.
We present a new dataset containing 10K human-annotated games of Go and show how these natural language annotations can be used as a tool for model interpretability. Given a board state and its associated comment, our approach uses linear probing to predict mentions of domain-specific terms (e.g., ko, atari) from the intermediate state representations of game-playing agents like AlphaGo Zero. We find these game concepts are nontrivially encoded in two distinct policy networks, one trained via imitation learning and another trained via reinforcement learning. Furthermore, mentions of domain-specific terms are most easily predicted from the later layers of both models, suggesting that these policy networks encode high-level abstractions similar to those used in the natural language annotations.