Nikola I. Nikolov

Other people with similar names: Nicolas Nicolov


2020

pdf bib
Rapformer: Conditional Rap Lyrics Generation with Denoising Autoencoders
Nikola I. Nikolov | Eric Malmi | Curtis Northcutt | Loreto Parisi
Proceedings of the 13th International Conference on Natural Language Generation

The ability to combine symbols to generate language is a defining characteristic of human intelligence, particularly in the context of artistic story-telling through lyrics. We develop a method for synthesizing a rap verse based on the content of any text (e.g., a news article), or for augmenting pre-existing rap lyrics. Our method, called Rapformer, is based on training a Transformer-based denoising autoencoder to reconstruct rap lyrics from content words extracted from the lyrics, trying to preserve the essential meaning, while matching the target style. Rapformer features a novel BERT-based paraphrasing scheme for rhyme enhancement which increases the average rhyme density of output lyrics by 10%. Experimental results on three diverse input domains show that Rapformer is capable of generating technically fluent verses that offer a good trade-off between content preservation and style transfer. Furthermore, a Turing-test-like experiment reveals that Rapformer fools human lyrics experts 25% of the time.

pdf bib
Character-Level Translation with Self-attention
Yingqiang Gao | Nikola I. Nikolov | Yuhuang Hu | Richard H.R. Hahnloser
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We explore the suitability of self-attention models for character-level neural machine translation. We test the standard transformer model, as well as a novel variant in which the encoder block combines information from nearby characters using convolutions. We perform extensive experiments on WMT and UN datasets, testing both bilingual and multilingual translation to English using up to three input languages (French, Spanish, and Chinese). Our transformer variant consistently outperforms the standard transformer at the character-level and converges faster while learning more robust character-level alignments.

pdf bib
Embedding-based Scientific Literature Discovery in a Text Editor Application
Onur Gökçe | Jonathan Prada | Nikola I. Nikolov | Nianlong Gu | Richard H.R. Hahnloser
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Each claim in a research paper requires all relevant prior knowledge to be discovered, assimilated, and appropriately cited. However, despite the availability of powerful search engines and sophisticated text editing software, discovering relevant papers and integrating the knowledge into a manuscript remain complex tasks associated with high cognitive load. To define comprehensive search queries requires strong motivation from authors, irrespective of their familiarity with the research field. Moreover, switching between independent applications for literature discovery, bibliography management, reading papers, and writing text burdens authors further and interrupts their creative process. Here, we present a web application that combines text editing and literature discovery in an interactive user interface. The application is equipped with a search engine that couples Boolean keyword filtering with nearest neighbor search over text embeddings, providing a discovery experience tuned to an author’s manuscript and his interests. Our application aims to take a step towards more enjoyable and effortless academic writing. The demo of the application (https://SciEditorDemo2020.herokuapp.com) and a short video tutorial (https://youtu.be/pkdVU60IcRc) are available online.

pdf bib
Abstractive Document Summarization without Parallel Data
Nikola I. Nikolov | Richard Hahnloser
Proceedings of the Twelfth Language Resources and Evaluation Conference

Abstractive summarization typically relies on large collections of paired articles and summaries. However, in many cases, parallel data is scarce and costly to obtain. We develop an abstractive summarization system that relies only on large collections of example summaries and non-matching articles. Our approach consists of an unsupervised sentence extractor that selects salient sentences to include in the final summary, as well as a sentence abstractor that is trained on pseudo-parallel and synthetic data, that paraphrases each of the extracted sentences. We perform an extensive evaluation of our method: on the CNN/DailyMail benchmark, on which we compare our approach to fully supervised baselines, as well as on the novel task of automatically generating a press release from a scientific journal article, which is well suited for our system. We show promising performance on both tasks, without relying on any article-summary pairs.

2019

pdf bib
Summary Refinement through Denoising
Nikola I. Nikolov | Alessandro Calmanovici | Richard Hahnloser
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

We propose a simple method for post-processing the outputs of a text summarization system in order to refine its overall quality. Our approach is to train text-to-text rewriting models to correct information redundancy errors that may arise during summarization. We train on synthetically generated noisy summaries, testing three different types of noise that introduce out-of-context information within each summary. When applied on top of extractive and abstractive summarization baselines, our summary denoising models yield metric improvements while reducing redundancy.

pdf bib
Large-Scale Hierarchical Alignment for Data-driven Text Rewriting
Nikola I. Nikolov | Richard Hahnloser
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

We propose a simple unsupervised method for extracting pseudo-parallel monolingual sentence pairs from comparable corpora representative of two different text styles, such as news articles and scientific papers. Our approach does not require a seed parallel corpus, but instead relies solely on hierarchical search over pre-trained embeddings of documents and sentences. We demonstrate the effectiveness of our method through automatic and extrinsic evaluation on text simplification from the normal to the Simple Wikipedia. We show that pseudo-parallel sentences extracted with our method not only supplement existing parallel data, but can even lead to competitive performance on their own.

2018

pdf bib
Character-level Chinese-English Translation through ASCII Encoding
Nikola I. Nikolov | Yuhuang Hu | Mi Xue Tan | Richard H.R. Hahnloser
Proceedings of the Third Conference on Machine Translation: Research Papers

Character-level Neural Machine Translation (NMT) models have recently achieved impressive results on many language pairs. They mainly do well for Indo-European language pairs, where the languages share the same writing system. However, for translating between Chinese and English, the gap between the two different writing systems poses a major challenge because of a lack of systematic correspondence between the individual linguistic units. In this paper, we enable character-level NMT for Chinese, by breaking down Chinese characters into linguistic units similar to that of Indo-European languages. We use the Wubi encoding scheme, which preserves the original shape and semantic information of the characters, while also being reversible. We show promising results from training Wubi-based models on the character- and subword-level with recurrent as well as convolutional models.