Nikos Voskarides


2022

pdf bib
Performance-Efficiency Trade-Offs in Adapting Language Models to Text Classification Tasks
Laura Aina | Nikos Voskarides | Roi Blanco
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Pre-trained language models (LMs) obtain state-of-the-art performance when adapted to text classification tasks. However, when using such models in real world applications, efficiency considerations are paramount. In this paper, we study how different training procedures that adapt LMs to text classification perform, as we vary model and train set size. More specifically, we compare standard fine-tuning, prompting, and knowledge distillation (KD) when the teacher was trained with either fine-tuning or prompting. Our findings suggest that even though fine-tuning and prompting work well to train large LMs on large train sets, there are more efficient alternatives that can reduce compute or data cost. Interestingly, we find that prompting combined with KD can reduce compute and data cost at the same time.

pdf bib
News Article Retrieval in Context for Event-centric Narrative Creation
Nikos Voskarides | Edgar Meij | Sabrina Sauer | Maarten de Rijke
Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)

Writers such as journalists often use automatic tools to find relevant content to include in their narratives. In this paper, we focus on supporting writers in the news domain to develop event-centric narratives. Given an incomplete narrative that specifies a main event and a context, we aim to retrieve news articles that discuss relevant events that would enable the continuation of the narrative. We formally define this task and propose a retrieval dataset construction procedure that relies on existing news articles to simulate incomplete narratives and relevant articles. Experiments on two datasets derived from this procedure show that state-of-the-art lexical and semantic rankers are not sufficient for this task. We show that combining those with a ranker that ranks articles by reverse chronological order outperforms those rankers alone. We also perform an in-depth quantitative and qualitative analysis of the results that sheds light on the characteristics of this task.

2021

pdf bib
Combining Lexical and Dense Retrieval for Computationally Efficient Multi-hop Question Answering
Georgios Sidiropoulos | Nikos Voskarides | Svitlana Vakulenko | Evangelos Kanoulas
Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing

In simple open-domain question answering (QA), dense retrieval has become one of the standard approaches for retrieving the relevant passages to infer an answer. Recently, dense retrieval also achieved state-of-the-art results in multi-hop QA, where aggregating information from multiple pieces of information and reasoning over them is required. Despite their success, dense retrieval methods are computationally intensive, requiring multiple GPUs to train. In this work, we introduce a hybrid (lexical and dense) retrieval approach that is highly competitive with the state-of-the-art dense retrieval models, while requiring substantially less computational resources. Additionally, we provide an in-depth evaluation of dense retrieval methods on limited computational resource settings, something that is missing from the current literature.

2015

pdf bib
Learning to Explain Entity Relationships in Knowledge Graphs
Nikos Voskarides | Edgar Meij | Manos Tsagkias | Maarten de Rijke | Wouter Weerkamp
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)