Paul Bedaride

Also published as: Paul Bédaride


2014

pdf bib
Mapping the Lexique des Verbes du Français (Lexicon of French Verbs) to a NLP lexicon using examples
Bruno Guillaume | Karën Fort | Guy Perrier | Paul Bédaride
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

This article presents experiments aiming at mapping the Lexique des Verbes du Français (Lexicon of French Verbs) to FRILEX, a Natural Language Processing (NLP) lexicon based on D ICOVALENCE. The two resources (Lexicon of French Verbs and D ICOVALENCE) were built by linguists, based on very different theories, which makes a direct mapping nearly impossible. We chose to use the examples provided in one of the resource to find implicit links between the two and make them explicit.

2012

pdf bib
Raffinement du Lexique des Verbes Français (Resource Refining : << Les Verbes Français >>) [in French]
Paul Bédaride
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 2: TALN

2010

pdf bib
Syntactic Testsuites and Textual Entailment Recognition
Paul Bedaride | Claire Gardent
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

We focus on textual entailments mediated by syntax and propose a new methodology to evaluate textual entailment recognition systems on such data. The main idea is to generate a syntactically annotated corpus of pairs of (non-)entailments and to use error mining methodology from the parsing field to identify the most likely sources of errors. To generate the evaluation corpus we use a template based generation approach where sentences, semantic representations and syntactic annotations are all created at the same time. Furthermore, we adapt the error mining methodology initially proposed for parsing to the field of textual entailment. To illustrate the approach, we apply the proposed methodology to the Afazio RTE system (an hybrid system focusing on syntactic entailment) and show how it permits identifying the most likely sources of errors made by this system on a testsuite of 10 000 (non-)entailment pairs which is balanced in term of (non-)entailment and in term of syntactic annotations.

pdf bib
Benchmarking for syntax-based sentential inference
Paul Bedaride | Claire Gardent
Coling 2010: Posters

2009

pdf bib
Semantic Normalisation : a Framework and an Experiment
Paul Bedaride | Claire Gardent
Proceedings of the Eight International Conference on Computational Semantics

2008

pdf bib
Réécriture et Détection d’Implication Textuelle
Paul Bédaride | Claire Gardent
Actes de la 15ème conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Nous présentons un système de normalisation de la variation syntaxique qui permet de mieux reconnaître la relation d’implication textuelle entre deux phrases. Le système est évalué sur une suite de tests comportant 2 520 paires test et les résultats montrent un gain en précision par rapport à un système de base variant entre 29.8 et 78.5 points la complexité des cas considérés.