In this paper, we introduce a novel Czech dataset for aspect-based sentiment analysis (ABSA), which consists of 3.1K manually annotated reviews from the restaurant domain. The dataset is built upon the older Czech dataset, which contained only separate labels for the basic ABSA tasks such as aspect term extraction or aspect polarity detection. Unlike its predecessor, our new dataset is specifically designed to allow its usage for more complex tasks, e.g. target-aspect-category detection. These advanced tasks require a unified annotation format, seamlessly linking sentiment elements (labels) together. Our dataset follows the format of the well-known SemEval-2016 datasets. This design choice allows effortless application and evaluation in cross-lingual scenarios, ultimately fostering cross-language comparisons with equivalent counterpart datasets in other languages. The annotation process engaged two trained annotators, yielding an impressive inter-annotator agreement rate of approximately 90%. Additionally, we provide 24M reviews without annotations suitable for unsupervised learning. We present robust monolingual baseline results achieved with various Transformer-based models and insightful error analysis to supplement our contributions. Our code and dataset are freely available for non-commercial research purposes.
While large language models (LLMs) show promise for various tasks, their performance in compound aspect-based sentiment analysis (ABSA) tasks lags behind fine-tuned models. However, the potential of LLMs fine-tuned for ABSA remains unexplored. This paper examines the capabilities of open-source LLMs fine-tuned for ABSA, focusing on LLaMA-based models. We evaluate the performance across four tasks and eight English datasets, finding that the fine-tuned Orca 2 model surpasses state-of-the-art results in all tasks. However, all models struggle in zero-shot and few-shot scenarios compared to fully fine-tuned ones. Additionally, we conduct error analysis to identify challenges faced by fine-tuned models.
This paper presents our system built for the WASSA-2024 Cross-lingual Emotion Detection Shared Task. The task consists of two subtasks: first, to assess an emotion label from six possible classes for a given tweet in one of five languages, and second, to predict words triggering the detected emotions in binary and numerical formats. Our proposed approach revolves around fine-tuning quantized large language models, specifically Orca 2, with low-rank adapters (LoRA) and multilingual Transformer-based models, such as XLM-R and mT5. We enhance performance through machine translation for both subtasks and trigger word switching for the second subtask. The system achieves excellent performance, ranking 1st in numerical trigger words detection, 3rd in binary trigger words detection, and 7th in emotion detection.
This paper presents a series of approaches aimed at enhancing the performance of Aspect-Based Sentiment Analysis (ABSA) by utilizing extracted semantic information from a Semantic Role Labeling (SRL) model. We propose a novel end-to-end Semantic Role Labeling model that effectively captures most of the structured semantic information within the Transformer hidden state. We believe that this end-to-end model is well-suited for our newly proposed models that incorporate semantic information. We evaluate the proposed models in two languages, English and Czech, employing ELECTRA-small models. Our combined models improve ABSA performance in both languages. Moreover, we achieved new state-of-the-art results on the Czech ABSA.
This paper introduces the first prompt-based methods for aspect-based sentiment analysis and sentiment classification in Czech. We employ the sequence-to-sequence models to solve the aspect-based tasks simultaneously and demonstrate the superiority of our prompt-based approach over traditional fine-tuning. In addition, we conduct zero-shot and few-shot learning experiments for sentiment classification and show that prompting yields significantly better results with limited training examples compared to traditional fine-tuning. We also demonstrate that pre-training on data from the target domain can lead to significant improvements in a zero-shot scenario.
This paper describes Slav-NER: the 4th Multilingual Named Entity Challenge in Slavic languages. The tasks involve recognizing mentions of named entities in Web documents, normalization of the names, and cross-lingual linking. This version of the Challenge covers three languages and five entity types. It is organized as part of the 9th Slavic Natural Language Processing Workshop, co-located with the EACL 2023 Conference.Seven teams registered and three participated actively in the competition. Performance for the named entity recognition and normalization tasks reached 90% F1 measure, much higher than reported in the first edition of the Challenge, but similar to the results reported in the latest edition. Performance for the entity linking task for individual language reached the range of 72-80% F1 measure. Detailed evaluation information is available on the Shared Task web page.
In this paper, we introduce a new Czech subjectivity dataset of 10k manually annotated subjective and objective sentences from movie reviews and descriptions. Our prime motivation is to provide a reliable dataset that can be used with the existing English dataset as a benchmark to test the ability of pre-trained multilingual models to transfer knowledge between Czech and English and vice versa. Two annotators annotated the dataset reaching 0.83 of the Cohen’s K inter-annotator agreement. To the best of our knowledge, this is the first subjectivity dataset for the Czech language. We also created an additional dataset that consists of 200k automatically labeled sentences. Both datasets are freely available for research purposes. Furthermore, we fine-tune five pre-trained BERT-like models to set a monolingual baseline for the new dataset and we achieve 93.56% of accuracy. We fine-tune models on the existing English dataset for which we obtained results that are on par with the current state-of-the-art results. Finally, we perform zero-shot cross-lingual subjectivity classification between Czech and English to verify the usability of our dataset as the cross-lingual benchmark. We compare and discuss the cross-lingual and monolingual results and the ability of multilingual models to transfer knowledge between languages.
In this paper, we aim at improving Czech sentiment with transformer-based models and their multilingual versions. More concretely, we study the task of polarity detection for the Czech language on three sentiment polarity datasets. We fine-tune and perform experiments with five multilingual and three monolingual models. We compare the monolingual and multilingual models’ performance, including comparison with the older approach based on recurrent neural networks. Furthermore, we test the multilingual models and their ability to transfer knowledge from English to Czech (and vice versa) with zero-shot cross-lingual classification. Our experiments show that the huge multilingual models can overcome the performance of the monolingual models. They are also able to detect polarity in another language without any training data, with performance not worse than 4.4 % compared to state-of-the-art monolingual trained models. Moreover, we achieved new state-of-the-art results on all three datasets.
This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models on more than 340K of sentences, which is 50 times more than multilingual models that include Czech data. We outperform the multilingual models on 9 out of 11 datasets. In addition, we establish the new state-of-the-art results on nine datasets. At the end, we discuss properties of monolingual and multilingual models based upon our results. We publish all the pre-trained and fine-tuned models freely for the research community.
This paper describes Slav-NER: the 3rd Multilingual Named Entity Challenge in Slavic languages. The tasks involve recognizing mentions of named entities in Web documents, normalization of the names, and cross-lingual linking. The Challenge covers six languages and five entity types, and is organized as part of the 8th Balto-Slavic Natural Language Processing Workshop, co-located with the EACL 2021 Conference. Ten teams participated in the competition. Performance for the named entity recognition task reached 90% F-measure, much higher than reported in the first edition of the Challenge. Seven teams covered all six languages, and five teams participated in the cross-lingual entity linking task. Detailed valuation information is available on the shared task web page.
In this paper, we describe our method for detection of lexical semantic change, i.e., word sense changes over time. We examine semantic differences between specific words in two corpora, chosen from different time periods, for English, German, Latin, and Swedish. Our method was created for the SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. We ranked 1st in Sub-task 1: binary change detection, and 4th in Sub-task 2: ranked change detection. We present our method which is completely unsupervised and language independent. It consists of preparing a semantic vector space for each corpus, earlier and later; computing a linear transformation between earlier and later spaces, using Canonical Correlation Analysis and orthogonal transformation;and measuring the cosines between the transformed vector for the target word from the earlier corpus and the vector for the target word in the later corpus.
Fake news detection and closely-related fact-checking have recently attracted a lot of attention. Automatization of these tasks has been already studied for English. For other languages, only a few studies can be found (e.g. (Baly et al., 2018)), and to the best of our knowledge, no research has been conducted for West Slavic languages. In this paper, we present datasets for Czech, Polish, and Slovak. We also ran initial experiments which set a baseline for further research into this area.
We describe the Second Multilingual Named Entity Challenge in Slavic languages. The task is recognizing mentions of named entities in Web documents, their normalization, and cross-lingual linking. The Challenge was organized as part of the 7th Balto-Slavic Natural Language Processing Workshop, co-located with the ACL-2019 conference. Eight teams participated in the competition, which covered four languages and five entity types. Performance for the named entity recognition task reached 90% F-measure, much higher than reported in the first edition of the Challenge. Seven teams covered all four languages, and five teams participated in the cross-lingual entity linking task. Detailed evaluation information is available on the shared task web page.
In this paper, we present our systems for the MADAR Shared Task: Arabic Fine-Grained Dialect Identification. The shared task consists of two subtasks. The goal of Subtask– 1 (S-1) is to detect an Arabic city dialect in a given text and the goal of Subtask–2 (S-2) is to predict the country of origin of a Twitter user by using tweets posted by the user. In S-1, our proposed systems are based on language modelling. We use language models to extract features that are later used as an input for other machine learning algorithms. We also experiment with recurrent neural networks (RNN), but these experiments showed that simpler machine learning algorithms are more successful. Our system achieves 0.658 macro F1-score and our rank is 6th out of 19 teams in S-1 and 7th in S-2 with 0.475 macro F1-score.
This paper describes our system created for the WASSA 2018 Implicit Emotion Shared Task. The goal of this task is to predict the emotion of a given tweet, from which a certain emotion word is removed. The removed word can be sad, happy, disgusted, angry, afraid or a synonym of one of them. Our proposed system is based on deep-learning methods. We use Bidirectional Long Short-Term Memory (BiLSTM) with word embeddings as an input. Pre-trained DeepMoji model and pre-trained emoji2vec emoji embeddings are also used as additional inputs. Our System achieves 0.657 macro F1 score and our rank is 13th out of 30.
This paper describes our system created for the SemEval-2018 Task 1: Affect in Tweets (AIT-2018). We participated in both the regression and the ordinal classification subtasks for emotion intensity detection in English, Arabic, and Spanish. For the regression subtask we use the AffectiveTweets system with added features using various word embeddings, lexicons, and LDA. For the ordinal classification we additionally use our Brainy system with features using parse tree, POS tags, and morphological features. The most beneficial features apart from word and character n-grams include word embeddings, POS count and morphological features.