In order for large language model (LLM)-based assistants to effectively adapt to evolving information needs, it must be possible to update their factual knowledge through continued training on new data. The standard recipe for doing so involves continued pre-training on new documents followed by instruction-tuning on question-answer (QA) pairs. However, we find that LLMs trained with this recipe struggle to answer questions, even though the perplexity of documents is minimized. We found that QA pairs are generally straightforward, while documents are more complex, weaving many factual statements together in an intricate manner. Therefore, we hypothesize that it is beneficial to expose LLMs to QA pairs before continued pre-training on documents so that the process of encoding knowledge from complex documents takes into account how this knowledge is accessed through questions. Based on this, we propose pre-instruction-tuning (PIT), a method that instruction-tunes on questions prior to training on documents. This contrasts with standard instruction-tuning, which learns how to extract knowledge after training on documents. Extensive experiments and ablation studies demonstrate that pre-instruction-tuning significantly enhances the ability of LLMs to absorb knowledge from new documents, outperforming standard instruction-tuning by 17.8%.
This tutorial will introduce the NLP community to Item Response Theory (IRT; Baker 2001). IRT is a method from the field of psychometrics for model and dataset assessment. IRT has been used for decades to build test sets for human subjects and estimate latent characteristics of dataset examples. Recently, there has been an uptick in work applying IRT to tasks in NLP. It is our goal to introduce the wider NLP community to IRT and show its benefits for a number of NLP tasks. From this tutorial, we hope to encourage wider adoption of IRT among NLP researchers.
Building an AI assistant that can seamlessly converse and instruct humans, in a user-centric situated scenario, requires several essential abilities:(1) spatial and temporal understanding of the situated and real-time user scenes,(2) capability of grounding the actively perceived visuals of users to conversation contexts,and (3) conversational reasoning over past utterances to perform just-in-time assistance. However, we currently lack a large-scale benchmark that captures user–assistant interactions with all of the aforementioned features. To this end, we propose SIMMC-VR, an extension of the SIMMC-2.0 dataset, to a video-grounded task-oriented dialog dataset that captures real-world AI-assisted user scenarios in VR.We propose a novel data collection paradigm that involves(1) generating object-centric multimodal dialog flows with egocentric visual streams and visually-grounded templates,and (2) manually paraphrasing the simulated dialogs for naturalness and diversity while preserving multimodal dependencies. To measure meaningful progress in the field, we propose four tasks to address the new challenges in SIMMC-VR, which require complex spatial-temporal dialog reasoning in active egocentric scenes. We benchmark the proposed tasks with strong multimodal models, and highlight the key capabilities that current models lack for future research directions.
Searching troves of videos with textual descriptions is a core multimodal retrieval task. Owing to the lack of a purpose-built dataset for text-to-video retrieval, video captioning datasets have been re-purposed to evaluate models by (1) treating captions as positive matches to their respective videos and (2) assuming all other videos to be negatives. However, this methodology leads to a fundamental flaw during evaluation: since captions are marked as relevant only to their original video, many alternate videos also match the caption, which introduces false-negative caption-video pairs. We show that when these false negatives are corrected, a recent state-of-the-art model gains 25% recall points—a difference that threatens the validity of the benchmark itself. To diagnose and mitigate this issue, we annotate and release 683K additional caption-video pairs. Using these, we recompute effectiveness scores for three models on two standard benchmarks (MSR-VTT and MSVD). We find that (1) the recomputed metrics are up to 25% recall points higher for the best models, (2) these benchmarks are nearing saturation for Recall@10, (3) caption length (generality) is related to the number of positives, and (4) annotation costs can be mitigated through sampling. We recommend retiring these benchmarks in their current form, and we make recommendations for future text-to-video retrieval benchmarks.
We present a reality check on large language models and inspect the promise of retrieval-augmented language models in comparison. Such language models are semi-parametric, where models integrate model parameters and knowledge from external data sources to make their predictions, as opposed to the parametric nature of vanilla large language models. We give initial experimental findings that semi-parametric architectures can be enhanced with views, a query analyzer/planner, and provenance to make a significantly more powerful system for question answering in terms of accuracy and efficiency, and potentially for other NLP tasks.
In natural language processing, multi-dataset benchmarks for common tasks (e.g., SuperGLUE for natural language inference and MRQA for question answering) have risen in importance. Invariably, tasks and individual examples vary in difficulty. Recent analysis methods infer properties of examples such as difficulty. In particular, Item Response Theory (IRT) jointly infers example and model properties from the output of benchmark tasks (i.e., scores for each model-example pair). Therefore, it seems sensible that methods like IRT should be able to detect differences between datasets in a task. This work shows that current IRT models are not as good at identifying differences as we would expect, explain why this is difficult, and outline future directions that incorporate more (textual) signal from examples.
We introduce Dynatask: an open source system for setting up custom NLP tasks that aims to greatly lower the technical knowledge and effort required for hosting and evaluating state-of-the-art NLP models, as well as for conducting model in the loop data collection with crowdworkers. Dynatask is integrated with Dynabench, a research platform for rethinking benchmarking in AI that facilitates human and model in the loop data collection and evaluation. To create a task, users only need to write a short task configuration file from which the relevant web interfaces and model hosting infrastructure are automatically generated. The system is available at https://dynabench.org/ and the full library can be found at https://github.com/facebookresearch/dynabench.
Question answering (QA) primarily descends from two branches of research: (1) Alan Turing’s investigation of machine intelligence at Manchester University and (2) Cyril Cleverdon’s comparison of library card catalog indices at Cranfield University. This position paper names and distinguishes these paradigms. Despite substantial overlap, subtle but significant distinctions exert an outsize influence on research. While one evaluation paradigm values creating more intelligent QA systems, the other paradigm values building QA systems that appeal to users. By better understanding the epistemic heritage of QA, researchers, academia, and industry can more effectively accelerate QA research.
Leaderboards are widely used in NLP and push the field forward. While leaderboards are a straightforward ranking of NLP models, this simplicity can mask nuances in evaluation items (examples) and subjects (NLP models). Rather than replace leaderboards, we advocate a re-imagining so that they better highlight if and where progress is made. Building on educational testing, we create a Bayesian leaderboard model where latent subject skill and latent item difficulty predict correct responses. Using this model, we analyze the ranking reliability of leaderboards. Afterwards, we show the model can guide what to annotate, identify annotation errors, detect overfitting, and identify informative examples. We conclude with recommendations for future benchmark tasks.
Open-ended human learning and information-seeking are increasingly mediated by digital assistants. However, such systems often ignore the user’s pre-existing knowledge. Assuming a correlation between engagement and user responses such as “liking” messages or asking followup questions, we design a Wizard-of-Oz dialog task that tests the hypothesis that engagement increases when users are presented with facts related to what they know. Through crowd-sourcing of this experiment, we collect and release 14K dialogs (181K utterances) where users and assistants converse about geographic topics like geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog acts, grounding to Wikipedia, and user reactions to messages. Responses using a user’s prior knowledge increase engagement. We incorporate this knowledge into a multi-task model that reproduces human assistant policies and improves over a bert content model by 13 mean reciprocal rank points.
Adversarial evaluation stress-tests a model’s understanding of natural language. Because past approaches expose superficial patterns, the resulting adversarial examples are limited in complexity and diversity. We propose human- in-the-loop adversarial generation, where human authors are guided to break models. We aid the authors with interpretations of model predictions through an interactive user interface. We apply this generation framework to a question answering task called Quizbowl, where trivia enthusiasts craft adversarial questions. The resulting questions are validated via live human–computer matches: Although the questions appear ordinary to humans, they systematically stump neural and information retrieval models. The adversarial questions cover diverse phenomena from multi-hop reasoning to entity type distractors, exposing open challenges in robust question answering.
One way to interpret neural model predictions is to highlight the most important input features—for example, a heatmap visualization over the words in an input sentence. In existing interpretation methods for NLP, a word’s importance is determined by either input perturbation—measuring the decrease in model confidence when that word is removed—or by the gradient with respect to that word. To understand the limitations of these methods, we use input reduction, which iteratively removes the least important word from the input. This exposes pathological behaviors of neural models: the remaining words appear nonsensical to humans and are not the ones determined as important by interpretation methods. As we confirm with human experiments, the reduced examples lack information to support the prediction of any label, but models still make the same predictions with high confidence. To explain these counterintuitive results, we draw connections to adversarial examples and confidence calibration: pathological behaviors reveal difficulties in interpreting neural models trained with maximum likelihood. To mitigate their deficiencies, we fine-tune the models by encouraging high entropy outputs on reduced examples. Fine-tuned models become more interpretable under input reduction, without accuracy loss on regular examples.