A patient portal allows discharged patients to access their personalized discharge instructions in electronic health records (EHRs). However, many patients have difficulty understanding or memorizing their discharge instructions (Zhao et al., 2017). In this paper, we present PaniniQA, a patient-centric interactive question answering system designed to help patients understand their discharge instructions. PaniniQA first identifies important clinical content from patients’ discharge instructions and then formulates patient-specific educational questions. In addition, PaniniQA is also equipped with answer verification functionality to provide timely feedback to correct patients’ misunderstandings. Our comprehensive automatic & human evaluation results demonstrate our PaniniQA is capable of improving patients’ mastery of their medical instructions through effective interactions.1
The potential choices for news article headlines are enormous, and finding the right balance between conveying the essential message and capturing the reader’s attention is key to effective headlining. However, presenting the same news headline to all readers is a suboptimal strategy, because it does not take into account the different preferences and interests of diverse readers, who may be confused about why a particular article has been recommended to them and do not see a clear connection between their interests and the recommended article. In this paper, we present a novel framework that addresses these challenges by incorporating user profiling to generate personalized headlines, and a combination of automated and human evaluation methods to determine user preference for personalized headlines. Our framework utilizes a learnable relevance function to assign personalized signature phrases to users based on their reading histories, which are then used to personalize headline generation. Through extensive evaluation, we demonstrate the effectiveness of our proposed framework in generating personalized headlines that meet the needs of a diverse audience. Our framework has the potential to improve the efficacy of news recommendations and facilitate creation of personalized content.
Answering how-to questions remains a major challenge in question answering research. A vast number of narrow, long-tail questions cannot be readily answered using a search engine. Moreover, there is little to no annotated data available to develop such systems. This paper makes a first attempt at generating coherent, long-form answers for how-to questions. We propose new architectures, consisting of passage retrieval, subtopic planning and narrative generation, to consolidate multiple relevant passages into a coherent, explanatory answer. Our subtopic planning module aims to produce a set of relevant, diverse subtopics that serve as the backbone for answer generation to improve topic coherence. We present extensive experiments on a WikiHow dataset repurposed for long-form question answering. Empirical results demonstrate that generating narratives to answer how-to questions is a challenging task. Nevertheless, our architecture incorporated with subtopic planning can produce high-quality, diverse narratives evaluated using automatic metrics and human assessment.
As demonstrated by GPT-3 and T5, transformers grow in capability as parameter spaces become larger and larger. However, for tasks that require a large amount of knowledge, non-parametric memory allows models to grow dramatically with a sub-linear increase in computational cost and GPU memory requirements. Recent models such as RAG and REALM have introduced retrieval into conditional generation. These models incorporate neural initial retrieval from a corpus of passages. We build on this line of research, proposing Re2G, which combines both neural initial retrieval and reranking into a BART-based sequence-to-sequence generation. Our reranking approach also permits merging retrieval results from sources with incomparable scores, enabling an ensemble of BM25 and neural initial retrieval. To train our system end-to-end, we introduce a novel variation of knowledge distillation to train the initial retrieval, reranker and generation using only ground truth on the target sequence output. We find large gains in four diverse tasks: zero-shot slot filling, question answering, fact checking and dialog, with relative gains of 9% to 34% over the previous state-of-the-art on the KILT leaderboard. We make our code available as open source.
We propose novel AI-empowered chat bots for learning as conversation where a user does not read a passage but gains information and knowledge through conversation with a teacher bot. Our information acquisition-oriented dialogue system employs a novel adaptation of reinforced self-play so that the system can be transferred to various domains without in-domain dialogue data, and can carry out conversations both informative and attentive to users.
An after-visit summary (AVS) is a summary note given to patients after their clinical visit. It recaps what happened during their clinical visit and guides patients’ disease self-management. Studies have shown that a majority of patients found after-visit summaries useful. However, many physicians face excessive workloads and do not have time to write clear and informative summaries. In this paper, we study the problem of automatic generation of after-visit summaries and examine whether those summaries can convey the gist of clinical visits. We report our findings on a new clinical dataset that contains a large number of electronic health record (EHR) notes and their associated summaries. Our results suggest that generation of lay language after-visit summaries remains a challenging task. Crucially, we introduce a feedback mechanism that alerts physicians when an automatic summary fails to capture the important details of the clinical notes or when it contains hallucinated facts that are potentially detrimental to the summary quality. Automatic and human evaluation demonstrates the effectiveness of our approach in providing writing feedback and supporting physicians.
Classical Chinese poetry is a jewel in the treasure house of Chinese culture. Previous poem generation models only allow users to employ keywords to interfere the meaning of generated poems, leaving the dominion of generation to the model. In this paper, we propose a novel task of generating classical Chinese poems from vernacular, which allows users to have more control over the semantic of generated poems. We adapt the approach of unsupervised machine translation (UMT) to our task. We use segmentation-based padding and reinforcement learning to address under-translation and over-translation respectively. According to experiments, our approach significantly improve the perplexity and BLEU compared with typical UMT models. Furthermore, we explored guidelines on how to write the input vernacular to generate better poems. Human evaluation showed our approach can generate high-quality poems which are comparable to amateur poems.