We investigate the effect of varying citation context window sizes on model performance in citation intent classification. Prior studies have been limited to the application of fixed-size contiguous citation contexts or the use of manually curated citation contexts. We introduce a new automated unsupervised approach for the selection of a dynamic-size and potentially non-contiguous citation context, which utilises the transformer-based document representations and embedding similarities. Our experiments show that the addition of non-contiguous citing sentences improves performance beyond previous results. Evalu- ating on the (1) domain-specific (ACL-ARC) and (2) the multi-disciplinary (SDP-ACT) dataset demonstrates that the inclusion of additional context beyond the citing sentence significantly improves the citation classifi- cation model’s performance, irrespective of the dataset’s domain. We release the datasets and the source code used for the experiments at: https://github.com/oacore/dynamic_citation_context
Classifying citations according to their purpose and importance is a challenging task that has gained considerable interest in recent years. This interest has been primarily driven by the need to create more transparent, efficient, merit-based reward systems in academia; a system that goes beyond simple bibliometric measures and considers the semantics of citations. Such systems that quantify and classify the influence of citations can act as edges that link knowledge nodes to a graph and enable efficient knowledge discovery. While a number of researchers have experimented with a variety of models, these experiments are typically limited to single-domain applications and the resulting models are hardly comparable. Recently, two Citation Context Classification (3C) shared tasks (at WOSP2020 and SDP2021) created the first benchmark enabling direct comparison of citation classification approaches, revealing the crucial impact of supplementary data on the performance of models. Reflecting from the findings of these shared tasks, we are releasing a new multi-disciplinary dataset, ACT2, an extended SDP 3C shared task dataset. This modified corpus has annotations for both citation function and importance classes newly enriched with supplementary contextual and non-contextual feature sets the selection of which follows from the lists of features used by the more successful teams in these shared tasks. Additionally, we include contextual features for cited papers (e.g. Abstract of the cited paper), which most existing datasets lack, but which have a lot of potential to improve results. We describe the methodology used for feature extraction and the challenges involved in the process. The feature enriched ACT2 dataset is available at https://github.com/oacore/ACT2.
With the ever-increasing pace of research and high volume of scholarly communication, scholars face a daunting task. Not only must they keep up with the growing literature in their own and related fields, scholars increasingly also need to rebut pseudo-science and disinformation. These needs have motivated an increasing focus on computational methods for enhancing search, summarization, and analysis of scholarly documents. However, the various strands of research on scholarly document processing remain fragmented. To reach out to the broader NLP and AI/ML community, pool distributed efforts in this area, and enable shared access to published research, we held the 3rd Workshop on Scholarly Document Processing (SDP) at COLING as a hybrid event (https://sdproc.org/2022/). The SDP workshop consisted of a research track, three invited talks and five Shared Tasks: 1) MSLR22: Multi-Document Summarization for Literature Reviews, 2) DAGPap22: Detecting automatically generated scientific papers, 3) SV-Ident 2022: Survey Variable Identification in Social Science Publications, 4) SKGG: Scholarly Knowledge Graph Generation, 5) MuP 2022: Multi Perspective Scientific Document Summarization. The program was geared towards NLP, information retrieval, and data mining for scholarly documents, with an emphasis on identifying and providing solutions to open challenges.
We present a new gold-standard dataset and a benchmark for the Research Theme Identification task, a sub-task of the Scholarly Knowledge Graph Generation shared task, at the 3rd Workshop on Scholarly Document Processing. The objective of the shared task was to label given research papers with research themes from a total of 36 themes. The benchmark was compiled using data drawn from the largest overall assessment of university research output ever undertaken globally (the Research Excellence Framework - 2014). We provide a performance comparison of a transformer-based ensemble, which obtains multiple predictions for a research paper, given its multiple textual fields (e.g. title, abstract, reference), with traditional machine learning models. The ensemble involves enriching the initial data with additional information from open-access digital libraries and Argumentative Zoning techniques (CITATION). It uses a weighted sum aggregation for the multiple predictions to obtain a final single prediction for the given research paper. Both data and the ensemble are publicly available on https://www.kaggle.com/competitions/sdp2022-scholarly-knowledge-graph-generation/data?select=task1_test_no_label.csv and https://github.com/ProjectDoSSIER/sdp2022, respectively.
This paper provides an overview of the 2021 3C Citation Context Classification shared task. The second edition of the shared task was organised as part of the 2nd Workshop on Scholarly Document Processing (SDP 2021). The task is composed of two subtasks: classifying citations based on their (Subtask A) purpose and (Subtask B) influence. As in the previous year, both tasks were hosted on Kaggle and used a portion of the new ACT dataset. A total of 22 teams participated in Subtask A, and 19 teams competed in Subtask B. All the participated systems were ranked based on their achieved macro f-score. The highest scores of 0.26973 and 0.60025 were reported for subtask A and B, respectively.
With the ever-increasing pace of research and high volume of scholarly communication, scholars face a daunting task. Not only must they keep up with the growing literature in their own and related fields, scholars increasingly also need to rebut pseudo-science and disinformation. These needs have motivated an increasing focus on computational methods for enhancing search, summarization, and analysis of scholarly documents. However, the various strands of research on scholarly document processing remain fragmented. To reach out to the broader NLP and AI/ML community, pool distributed efforts in this area, and enable shared access to published research, we held the 2nd Workshop on Scholarly Document Processing (SDP) at NAACL 2021 as a virtual event (https://sdproc.org/2021/). The SDP workshop consisted of a research track, three invited talks, and three Shared Tasks (LongSumm 2021, SCIVER, and 3C). The program was geared towards the application of NLP, information retrieval, and data mining for scholarly documents, with an emphasis on identifying and providing solutions to open challenges.
The 3C Citation Context Classification task is the first shared task addressing citation context classification. The two subtasks, A and B, associated with this shared task, involves the classification of citations based on their purpose and influence, respectively. Both tasks use a portion of the new ACT dataset, developed by the researchers at The Open University, UK. The tasks were hosted on Kaggle, and the participated systems were evaluated using the macro f-score. Three teams participated in subtask A and four teams participated in subtask B. The best performing systems obtained an overall score of 0.2056 for subtask A and 0.5556 for subtask B, outperforming the simple majority class baseline models, which scored 0.11489 and 0.32249, respectively. In this paper we provide a report specifying the shared task, the dataset used, a short description of the participating systems and the final results obtained by the teams based on the evaluation criteria. The shared task has been organised as part of the 8th International Workshop on Mining Scientific Publications (WOSP 2020) workshop.
Deduplication is the task of identifying near and exact duplicate data items in a collection. In this paper, we present a novel method for deduplication of scholarly documents. We develop a hybrid model which uses structural similarity (locality sensitive hashing) and meaning representation (word embeddings) of document texts to determine (near) duplicates. Our collection constitutes a subset of multidisciplinary scholarly documents aggregated from research repositories. We identify several issues causing data inaccuracies in such collections and motivate the need for deduplication. In lack of existing dataset suitable for study of deduplication of scholarly documents, we create a ground truth dataset of 100K scholarly documents and conduct a series of experiments to empirically establish optimal values for the parameters of our deduplication method. Experimental evaluation shows that our method achieves a macro F1-score of 0.90. We productionise our method as a publicly accessible web API service serving deduplication of scholarly documents in real time.