Prasann Singhal


2023

pdf bib
Assessing Out-of-Domain Language Model Performance from Few Examples
Prasann Singhal | Jarad Forristal | Xi Ye | Greg Durrett
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

While pretrained language models have exhibited impressive generalization capabilities, they still behave unpredictably under certain domain shifts. In particular, a model may learn a reasoning process on in-domain training data that does not hold for out-of-domain test data. We address the task of predicting out-of-domain (OOD) performance in a few-shot fashion: given a few target-domain examples and a set of models with similar training performance, can we understand how these models will perform on OOD test data? We benchmark the performance on this task when looking at model accuracy on the few-shot examples, then investigate how to incorporate analysis of the models’ behavior using feature attributions to better tackle this problem. Specifically, we explore a set of factors designed to reveal model agreement with certain pathological heuristics that may indicate worse generalization capabilities. On textual entailment, paraphrase recognition, and a synthetic classification task, we show that attribution-based factors can help rank relative model OOD performance. However, accuracy on a few-shot test set is a surprisingly strong baseline, particularly when the system designer does not have in-depth prior knowledge about the domain shift.

pdf bib
EEL: Efficiently Encoding Lattices for Reranking
Prasann Singhal | Jiacheng Xu | Xi Ye | Greg Durrett
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Standard decoding approaches for conditional text generation tasks typically search for an output hypothesis with high model probability, but this may not yield the best hypothesis according to human judgments of quality. Reranking to optimize for “downstream” metrics can more closely optimize for quality, but many metrics of interest are computed with pre-trained language models, which are slow to apply to large numbers of hypotheses. We explore an approach for reranking hypotheses by using Transformers to efficiently encode lattices of generated outputs, a method we call EEL. With a single Transformer pass over the entire lattice, we can approximately compute a contextualized representation of each token as if it were only part of a single hypothesis in isolation. We combine this approach with a new class of token-factored rerankers (TFRs) that allow for efficient extraction of high reranker-scoring hypotheses from the lattice. Empirically, our approach incurs minimal degradation error compared to the exponentially slower approach of encoding each hypothesis individually. When applying EEL with TFRs across three text generation tasks, our results show both substantial speedup compared to naive reranking and often better performance on downstream metrics than comparable approaches.