Multi-choice questions (MCQ) are a common method for assessing the world knowledge of large language models (LLMs), demonstrated by benchmarks such as MMLU and C-Eval. However, recent findings indicate that even top-tier LLMs, such as ChatGPT and GPT4, might display inconsistencies when faced with slightly varied inputs. This raises concerns about the credibility of MCQ-based evaluations. To address this issue, we introduced three knowledge-equivalent question variants: option position shuffle, option label replacement, and conversion to a True/False format. We rigorously tested a range of LLMs, varying in model size (from 6B to 70B) and types—pretrained language model (PLM), supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF). Our findings from MMLU and C-Eval revealed that accuracy for individual questions lacks robustness, particularly in smaller models (<30B) and PLMs. Consequently, we advocate that consistent accuracy may serve as a more reliable metric for evaluating and ranking LLMs.
In this work, we study the robustness of two typical terminology translation methods: Placeholder (PH) and Code-Switch (CS), concerning (1) the number of constraints and (2) the target constraint length. We identify that existing terminology constraint test sets, such as IATE, Wiktionary, and TICO, are blind to this issue due to oversimplified constraint settings. To solve it, we create a new challenging test set of English-German, increasing the average constraint count per sentence from 1.1~1.7 to 6.1 and the length per target constraint from 1.1~1.2 words to 3.4 words. Then we find that PH and CS methods degrade as the number of constraints increases, but they have complementary strengths. Specifically, PH is better at retaining high constraint accuracy but lower translation quality as measured by BLEU and COMET scores. In contrast, CS has the opposite results. Based on these observations, we propose a simple but effective method combining the advantages of PH and CS. This approach involves training a model like PH to predict the term labels, and then during inference replacing those labels with target terminology text like CS, so that the subsequent generation is aware of the target term content. Extensive experimental results show that this approach can achieve high constraint accuracy and translation quality simultaneously, regardless of the number or length of constraints.
This work empirically confirms that non-autoregressive translation (NAT) is less robust in decoding batch size and hardware settings than autoregressive translation (AT). To address this issue, we demonstrate that prompting a small number of AT predictions can significantly reduce the performance gap between AT and NAT through synthetic experiments. Following this line, we propose hybrid-regressive translation (HRT), a two-stage translation prototype that combines the strengths of AT and NAT. Specifically, HRT first generates discontinuous sequences via autoregression (e.g., make a prediction for every k tokens, k>1) and then fills in all previously skipped tokens at once in a non-autoregressive manner. Experiments on five translation tasks show that HRT achieves comparable translation quality with AT while having at least 1.5x faster inference regardless of batch size and device. Additionally, HRT successfully inherits the sound characteristics of AT in the deep-encoder-shallow-decoder architecture, allowing for further speedup without BLEU loss.
K-Nearest Neighbor Neural Machine Translation (kNNMT) successfully incorporates external corpus by retrieving word-level representations at test time. Generally, kNNMT borrows the off-the-shelf context representation in the translation task, e.g., the output of the last decoder layer, as the query vector of the retrieval task. In this work, we highlight that coupling the representations of these two tasks is sub-optimal for fine-grained retrieval. To alleviate it, we leverage supervised contrastive learning to learn the distinctive retrieval representation derived from the original context representation. We also propose a fast and effective approach to constructing hard negative samples. Experimental results on five domains show that our approach improves the retrieval accuracy and BLEU score compared to vanilla kNNMT.
This paper describes the submission of the RoyalFlush neural machine translation system for the WMT 2022 translation efficiency task. Unlike the commonly used autoregressive translation system, we adopted a two-stage translation paradigm called Hybrid Regression Translation (HRT) to combine the advantages of autoregressive and non-autoregressive translation. Specifically, HRT first autoregressively generates a discontinuous sequence (e.g., make a prediction every k tokens, k1) and then fills in all previously skipped tokens at once in a non-autoregressive manner. Thus, we can easily trade off the translation quality and speed by adjusting k. In addition, by integrating other modeling techniques (e.g., sequence-level knowledge distillation and deep-encoder-shallow-decoder layer allocation strategy) and a mass of engineering efforts, HRT improves 80% inference speed and achieves equivalent translation performance with the same-capacity AT counterpart. Our fastest system reaches 6k+ words/second on the GPU latency setting, estimated to be about 3.1x faster than the last year’s winner.
The standard neural machine translation model can only decode with the same depth configuration as training. Restricted by this feature, we have to deploy models of various sizes to maintain the same translation latency, because the hardware conditions on different terminal devices (e.g., mobile phones) may vary greatly. Such individual training leads to increased model maintenance costs and slower model iterations, especially for the industry. In this work, we propose to use multi-task learning to train a flexible depth model that can adapt to different depth configurations during inference. Experimental results show that our approach can simultaneously support decoding in 24 depth configurations and is superior to the individual training and another flexible depth model training method——LayerDrop.
Traditional neural machine translation is limited to the topmost encoder layer’s context representation and cannot directly perceive the lower encoder layers. Existing solutions usually rely on the adjustment of network architecture, making the calculation more complicated or introducing additional structural restrictions. In this work, we propose layer-wise multi-view learning to solve this problem, circumventing the necessity to change the model structure. We regard each encoder layer’s off-the-shelf output, a by-product in layer-by-layer encoding, as the redundant view for the input sentence. In this way, in addition to the topmost encoder layer (referred to as the primary view), we also incorporate an intermediate encoder layer as the auxiliary view. We feed the two views to a partially shared decoder to maintain independent prediction. Consistency regularization based on KL divergence is used to encourage the two views to learn from each other. Extensive experimental results on five translation tasks show that our approach yields stable improvements over multiple strong baselines. As another bonus, our method is agnostic to network architectures and can maintain the same inference speed as the original model.
In this paper, we describe two systems we developed for the three tracks we have participated in the BEA-2019 GEC Shared Task. We investigate competitive classification models with bi-directional recurrent neural networks (Bi-RNN) and neural machine translation (NMT) models. For different tracks, we use ensemble systems to selectively combine the NMT models, the classification models, and some rules, and demonstrate that an ensemble solution can effectively improve GEC performance over single systems. Our GEC systems ranked the first in the Unrestricted Track, and the third in both the Restricted Track and the Low Resource Track.
This paper described NiuTrans neural machine translation systems for the WMT 2019 news translation tasks. We participated in 13 translation directions, including 11 supervised tasks, namely EN↔{ZH, DE, RU, KK, LT}, GU→EN and the unsupervised DE↔CS sub-track. Our systems were built on Deep Transformer and several back-translation methods. Iterative knowledge distillation and ensemble+reranking were also employed to obtain stronger models. Our unsupervised submissions were based on NMT enhanced by SMT. As a result, we achieved the highest BLEU scores in {KK↔EN, GU→EN} directions, ranking 2nd in {RU→EN, DE↔CS} and 3rd in {ZH→EN, LT→EN, EN→RU, EN↔DE} among all constrained submissions.
Transformer is the state-of-the-art model in recent machine translation evaluations. Two strands of research are promising to improve models of this kind: the first uses wide networks (a.k.a. Transformer-Big) and has been the de facto standard for development of the Transformer system, and the other uses deeper language representation but faces the difficulty arising from learning deep networks. Here, we continue the line of research on the latter. We claim that a truly deep Transformer model can surpass the Transformer-Big counterpart by 1) proper use of layer normalization and 2) a novel way of passing the combination of previous layers to the next. On WMT’16 English-German and NIST OpenMT’12 Chinese-English tasks, our deep system (30/25-layer encoder) outperforms the shallow Transformer-Big/Base baseline (6-layer encoder) by 0.4-2.4 BLEU points. As another bonus, the deep model is 1.6X smaller in size and 3X faster in training than Transformer-Big.
This paper describes the submission of the NiuTrans neural machine translation system for the WMT 2018 Chinese ↔ English news translation tasks. Our baseline systems are based on the Transformer architecture. We further improve the translation performance 2.4-2.6 BLEU points from four aspects, including architectural improvements, diverse ensemble decoding, reranking, and post-processing. Among constrained submissions, we rank 2nd out of 16 submitted systems on Chinese → English task and 3rd out of 16 on English → Chinese task, respectively.
Neural machine translation systems require a number of stacked layers for deep models. But the prediction depends on the sentence representation of the top-most layer with no access to low-level representations. This makes it more difficult to train the model and poses a risk of information loss to prediction. In this paper, we propose a multi-layer representation fusion (MLRF) approach to fusing stacked layers. In particular, we design three fusion functions to learn a better representation from the stack. Experimental results show that our approach yields improvements of 0.92 and 0.56 BLEU points over the strong Transformer baseline on IWSLT German-English and NIST Chinese-English MT tasks respectively. The result is new state-of-the-art in German-English translation.
We offer a simple and effective method to seek a better balance between model confidence and length preference for Neural Machine Translation (NMT). Unlike the popular length normalization and coverage models, our model does not require training nor reranking the limited n-best outputs. Moreover, it is robust to large beam sizes, which is not well studied in previous work. On the Chinese-English and English-German translation tasks, our approach yields +0.4 1.5 BLEU improvements over the state-of-the-art baselines.