Qiannan Zhu


2025

pdf bib
Federated Incremental Named Entity Recognition
Zesheng Liu | Qiannan Zhu | Cuiping Li | Hong Chen
Proceedings of the 31st International Conference on Computational Linguistics

Federated learning-based Named Entity Recognition (FNER) has attracted widespread attention through decentralized training on local clients. However, most FNER models assume that entity types are pre-fixed, so in practical applications, local clients constantly receive new entity types without enough storage to access old entity types, resulting in severe forgetting on previously learned knowledge. In addition, new clients collecting only new entity types may join the global training of FNER irregularly, further exacerbating catastrophic forgetting. To overcome the above challenges, we propose a Forgetting-Subdued Learning (FSL) model which solves the forgetting problem on old entity types from both intra-client and inter-client two aspects. Specifically, for intra-client aspect, we propose a prototype-guided adaptive pseudo labeling and a prototypical relation distillation loss to surmount catastrophic forgetting of old entity types with semantic shift. Furthermore, for inter-client aspect, we propose a task transfer detector. It can identify the arrival of new entity types that are protected by privacy and store the latest old global model for relation distillation. Qualitative experiments have shown that our model has made significant improvements compared to several baseline methods.

pdf bib
Enhancing Reranking for Recommendation with LLMs through User Preference Retrieval
Haobo Zhang | Qiannan Zhu | Zhicheng Dou
Proceedings of the 31st International Conference on Computational Linguistics

Recently, large language models (LLMs) have shown the potential to enhance recommendations due to their sufficient knowledge and remarkable summarization ability. However, the existing LLM-powered recommendation may create redundant output, which generates irrelevant information about the user’s preferences on candidate items from user behavior sequences. To address the issues, we propose a framework UR4Rec that enhances reranking for recommendation with large language models through user preference retrieval. Specifically, UR4Rec develops a small transformer-based user preference retriever towards candidate items to build the bridge between LLMs and recommendation, which focuses on producing the essential knowledge through LLMs from user behavior sequences to enhance reranking for recommendation. Our experimental results on three real-world public datasets demonstrate the superiority of UR4Rec over existing baseline models.

2024

pdf bib
Few-Shot Learning for Cold-Start Recommendation
Mingming Li | Songlin Hu | Fuqing Zhu | Qiannan Zhu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Cold-start is a significant problem in recommender systems. Recently, with the development of few-shot learning and meta-learning techniques, many researchers have devoted themselves to adopting meta-learning into recommendation as the natural scenario of few-shots. Nevertheless, we argue that recent work has a huge gap between few-shot learning and recommendations. In particular, users are locally dependent, not globally independent in recommendation. Therefore, it is necessary to formulate the local relationships between users. To accomplish this, we present a novel Few-shot learning method for Cold-Start (FCS) recommendation that consists of three hierarchical structures. More concretely, this first hierarchy is the global-meta parameters for learning the global information of all users; the second hierarchy is the local-meta parameters whose goal is to learn the adaptive cluster of local users; the third hierarchy is the specific parameters of the target user. Both the global and local information are formulated, addressing the new user’s problem in accordance with the few-shot records rapidly. Experimental results on two public real-world datasets show that the FCS method could produce stable improvements compared with the state-of-the-art.