Qiaoqiao She

Also published as: QiaoQiao She


2024

pdf bib
QDMR-based Planning-and-Solving Prompting for Complex Reasoning Tasks
Jinfeng Huang | Qiaoqiao She | Wenbin Jiang | Hua Wu | Yang Hao | Tong Xu | Feng Wu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Chain-of-Thought prompting has improved reasoning capability of large language models (LLM). However, it still is challenging to guarantee the effectiveness and stability for questions requiring complicated reasoning. Recently, Plan-and-Solve prompting enhances the reasoning capability for complex questions by planning the solution steps firstly and then solving them step by step, but it suffers the difficulty to represent and execute the problem-solving logic of complex questions. To deal with these challenges, in this work, we propose a novel Plan-and-Solve prompting method based on Question Decomposition Meaning Representation (QDMR). Specifically, this method first allows the LLM to generate a QDMR graph to represent the problem-solving logic, which is a directed acyclic graph composed of sub-questions. Then, the LLM generates a specific solving process based on the QDMR graph. When solving each sub-question, it can locate the preceding sub-questions and their answers according to the QDMR graph, and then utilize this information for solution. Compared with existing Plan-and-Solve prompting techniques, our method can not only represent the problem-solving logic of complicated questions more accurately with the aid of QDMR graph, but also deliver the dependence information accurately for different solution steps according to the QDMR graph. In addition, with the supervised fine-tuning on the Allen Institute dataset, the decomposing capability of LLM for complicated questions can be considerably enhanced. Extensive experiments show that our method has achieve a great significance in arithmetic reasoning and commonsense reasoning task by comparing the classical Chain-of-Thought prompting and Plan-and-Solve prompting techniques, and the improvements achieved are even greater for problems with more reasoning steps.

pdf bib
Multimodal Table Understanding
Mingyu Zheng | Xinwei Feng | Qingyi Si | Qiaoqiao She | Zheng Lin | Wenbin Jiang | Weiping Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although great progress has been made by previous table understanding methods including recent approaches based on large language models (LLMs), they rely heavily on the premise that given tables must be converted into a certain text sequence (such as Markdown or HTML) to serve as model input. However, it is difficult to access such high-quality textual table representations in some real-world scenarios, and table images are much more accessible. Therefore, how to directly understand tables using intuitive visual information is a crucial and urgent challenge for developing more practical applications. In this paper, we propose a new problem, multimodal table understanding, where the model needs to generate correct responses to various table-related requests based on the given table image. To facilitate both the model training and evaluation, we construct a large-scale dataset named MMTab, which covers a wide spectrum of table images, instructions and tasks. On this basis, we develop Table-LLaVA, a generalist tabular multimodal large language model (MLLM), which significantly outperforms recent open-source MLLM baselines on 23 benchmarks under held-in and held-out settings.

2023

pdf bib
IM-TQA: A Chinese Table Question Answering Dataset with Implicit and Multi-type Table Structures
Mingyu Zheng | Yang Hao | Wenbin Jiang | Zheng Lin | Yajuan Lyu | QiaoQiao She | Weiping Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Various datasets have been proposed to promote the development of Table Question Answering (TQA) technique. However, the problem setting of existing TQA benchmarks suffers from two limitations. First, they directly provide models with explicit table structures where row headers and column headers of the table are explicitly annotated and treated as model input during inference. Second, they only consider tables of limited types and ignore other tables especially complex tables with flexible header locations. Such simplified problem setting cannot cover practical scenarios where models need to process tables without header annotations in the inference phase or tables of different types. To address above issues, we construct a new TQA dataset with implicit and multi-type table structures, named IM-TQA, which not only requires the model to understand tables without directly available header annotations but also to handle multi-type tables including previously neglected complex tables. We investigate the performance of recent methods on our dataset and find that existing methods struggle in processing implicit and multi-type table structures. Correspondingly, we propose an RGCN-RCI framework outperforming recent baselines. We will release our dataset to facilitate future research.

pdf bib
Chain-of-Thought Reasoning in Tabular Language Models
Mingyu Zheng | Hao Yang | Wenbin Jiang | Zheng Lin | Yajuan Lyu | Qiaoqiao She | Weiping Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

Tabular mathematical reasoning task requires models to perform multi-step operations including information look-up and numerical calculation, based on heterogeneous data from tables and questions. Existing solutions tend to extend chain-of-thought (CoT) reasoning into powerful large language models (LLMs) to promote multi-hop mathematical reasoning. However, such LLM-based approaches are not a viable solution in the scenario of privatization deployment or limited resources. To address this problem, we revisit small-scale tabular language models (TaLMs) and extend chain-of-thought reasoning into TaLMs for the first time. Specifically, we propose a novel framework, TaCo, which coordinates two TaLMs responsible for CoT generation and answer inference, respectively. Besides, our framework can be combined with an external calculator to enhance accurate numerical calculation. On the TABMWP dataset, TaCo outperforms the state-of-the-art ChatGPT by 9.55% (82.60%92.15% in accuracy) with much less parameters (0.8B). The code will be released along with the paper.

2022

pdf bib
Explainable Question Answering based on Semantic Graph by Global Differentiable Learning and Dynamic Adaptive Reasoning
Jianguo Mao | Wenbin Jiang | Xiangdong Wang | Hong Liu | Yu Xia | Yajuan Lyu | QiaoQiao She
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multi-hop Question Answering is an agent task for testing the reasoning ability. With the development of pre-trained models, the implicit reasoning ability has been surprisingly improved and can even surpass human performance. However, the nature of the black box hinders the construction of explainable intelligent systems. Several researchers have explored explainable neural-symbolic reasoning methods based on question decomposition techniques. The undifferentiable symbolic operations and the error propagation in the reasoning process lead to poor performance. To alleviate it, we propose a simple yet effective Global Differentiable Learning strategy to explore optimal reasoning paths from the latent probability space so that the model learns to solve intermediate reasoning processes without expert annotations. We further design a Dynamic Adaptive Reasoner to enhance the generalization of unseen questions. Our method achieves 17% improvements in F1-score against BreakRC and shows better interpretability. We take a step forward in building interpretable reasoning methods.

pdf bib
DuReader-Retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine
Yifu Qiu | Hongyu Li | Yingqi Qu | Ying Chen | QiaoQiao She | Jing Liu | Hua Wu | Haifeng Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In this paper, we present DuReader-retrieval, a large-scale Chinese dataset for passage retrieval. DuReader-retrieval contains more than 90K queries and over 8M unique passages from a commercial search engine. To alleviate the shortcomings of other datasets and ensure the quality of our benchmark, we (1) reduce the false negatives in development and test sets by manually annotating results pooled from multiple retrievers, and (2) remove the training queries that are semantically similar to the development and testing queries. Additionally, we provide two out-of-domain testing sets for cross-domain evaluation, as well as a set of human translated queries for for cross-lingual retrieval evaluation. The experiments demonstrate that DuReader-retrieval is challenging and a number of problems remain unsolved, such as the salient phrase mismatch and the syntactic mismatch between queries and paragraphs. These experiments also show that dense retrievers do not generalize well across domains, and cross-lingual retrieval is essentially challenging. DuReader-retrieval is publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval.

pdf bib
DuReadervis: A Chinese Dataset for Open-domain Document Visual Question Answering
Le Qi | Shangwen Lv | Hongyu Li | Jing Liu | Yu Zhang | Qiaoqiao She | Hua Wu | Haifeng Wang | Ting Liu
Findings of the Association for Computational Linguistics: ACL 2022

Open-domain question answering has been used in a wide range of applications, such as web search and enterprise search, which usually takes clean texts extracted from various formats of documents (e.g., web pages, PDFs, or Word documents) as the information source. However, designing different text extraction approaches is time-consuming and not scalable. In order to reduce human cost and improve the scalability of QA systems, we propose and study an Open-domain Document Visual Question Answering (Open-domain DocVQA) task, which requires answering questions based on a collection of document images directly instead of only document texts, utilizing layouts and visual features additionally. Towards this end, we introduce the first Chinese Open-domain DocVQA dataset called DuReadervis, containing about 15K question-answering pairs and 158K document images from the Baidu search engine. There are three main challenges in DuReadervis: (1) long document understanding, (2) noisy texts, and (3) multi-span answer extraction. The extensive experiments demonstrate that the dataset is challenging. Additionally, we propose a simple approach that incorporates the layout and visual features, and the experimental results show the effectiveness of the proposed approach. The dataset and code will be publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-vis.

2021

pdf bib
RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
Ruiyang Ren | Yingqi Qu | Jing Liu | Wayne Xin Zhao | QiaoQiao She | Hua Wu | Haifeng Wang | Ji-Rong Wen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly optimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage reranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other’s relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.

pdf bib
PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval
Ruiyang Ren | Shangwen Lv | Yingqi Qu | Jing Liu | Wayne Xin Zhao | QiaoQiao She | Hua Wu | Haifeng Wang | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2019

pdf bib
Enhancing Pre-Trained Language Representations with Rich Knowledge for Machine Reading Comprehension
An Yang | Quan Wang | Jing Liu | Kai Liu | Yajuan Lyu | Hua Wu | Qiaoqiao She | Sujian Li
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Machine reading comprehension (MRC) is a crucial and challenging task in NLP. Recently, pre-trained language models (LMs), especially BERT, have achieved remarkable success, presenting new state-of-the-art results in MRC. In this work, we investigate the potential of leveraging external knowledge bases (KBs) to further improve BERT for MRC. We introduce KT-NET, which employs an attention mechanism to adaptively select desired knowledge from KBs, and then fuses selected knowledge with BERT to enable context- and knowledge-aware predictions. We believe this would combine the merits of both deep LMs and curated KBs towards better MRC. Experimental results indicate that KT-NET offers significant and consistent improvements over BERT, outperforming competitive baselines on ReCoRD and SQuAD1.1 benchmarks. Notably, it ranks the 1st place on the ReCoRD leaderboard, and is also the best single model on the SQuAD1.1 leaderboard at the time of submission (March 4th, 2019).

2018

pdf bib
DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications
Wei He | Kai Liu | Jing Liu | Yajuan Lyu | Shiqi Zhao | Xinyan Xiao | Yuan Liu | Yizhong Wang | Hua Wu | Qiaoqiao She | Xuan Liu | Tian Wu | Haifeng Wang
Proceedings of the Workshop on Machine Reading for Question Answering

This paper introduces DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, designed to address real-world MRC. DuReader has three advantages over previous MRC datasets: (1) data sources: questions and documents are based on Baidu Search and Baidu Zhidao; answers are manually generated. (2) question types: it provides rich annotations for more question types, especially yes-no and opinion questions, that leaves more opportunity for the research community. (3) scale: it contains 200K questions, 420K answers and 1M documents; it is the largest Chinese MRC dataset so far. Experiments show that human performance is well above current state-of-the-art baseline systems, leaving plenty of room for the community to make improvements. To help the community make these improvements, both DuReader and baseline systems have been posted online. We also organize a shared competition to encourage the exploration of more models. Since the release of the task, there are significant improvements over the baselines.