Qingyu Yin


2024

pdf bib
IterAlign: Iterative Constitutional Alignment of Large Language Models
Xiusi Chen | Hongzhi Wen | Sreyashi Nag | Chen Luo | Qingyu Yin | Ruirui Li | Zheng Li | Wei Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

With the rapid development of large language models (LLMs), aligning LLMs with human values and societal norms to ensure their reliability and safety has become crucial. Reinforcement learning with human feedback (RLHF) and Constitutional AI (CAI) have been proposed for LLM alignment. However, these methods require either heavy human annotations or explicitly pre-defined constitutions, which are labor-intensive and resource-consuming. To overcome these drawbacks, we study constitution-based LLM alignment and propose a data-driven constitution discovery and self-alignment framework called IterAlign. IterAlign leverages red teaming to unveil the weaknesses of an LLM and automatically discovers new constitutions using a stronger LLM. These constitutions are then used to guide self-correction of the base LLM. Such a constitution discovery pipeline can be run iteratively and automatically to discover new constitutions that specifically target the alignment gaps in the current LLM. Empirical results on several safety benchmark datasets and multiple base LLMs show that IterAlign successfully improves truthfulness, helpfulness, harmlessness and honesty, improving the LLM alignment by up to 13.5% in harmlessness.

2023

pdf bib
Multimodal Prompt Learning for Product Title Generation with Extremely Limited Labels
Bang Yang | Fenglin Liu | Zheng Li | Qingyu Yin | Chenyu You | Bing Yin | Yuexian Zou
Findings of the Association for Computational Linguistics: ACL 2023

Generating an informative and attractive title for the product is a crucial task for e-commerce. Most existing works follow the standard multimodal natural language generation approaches, e.g., image captioning, and employ the large scale of human-labelled datasets to train desirable models. However, for novel products, especially in a different domain, there are few existing labelled data. In this paper, we propose a prompt-based approach, i.e., the Multimodal Prompt Learning framework, to accurately and efficiently generate titles for novel products with limited labels. We observe that the core challenges of novel product title generation are the understanding of novel product characteristics and the generation of titles in a novel writing style. To this end, we build a set of multimodal prompts from different modalities to preserve the corresponding characteristics and writing styles of novel products. As a result, with extremely limited labels for training, the proposed method can retrieve the multimodal prompts to generate desirable titles for novel products. The experiments and analyses are conducted on five novel product categories under both the in-domain and out-of-domain experimental settings. The results show that, with only 1% of downstream labelled data for training, our proposed approach achieves the best few-shot results and even achieves competitive results with fully-supervised methods trained on 100% of training data; With the full labelled data for training, our method achieves state-of-the-art results.

pdf bib
Graph Reasoning for Question Answering with Triplet Retrieval
Shiyang Li | Yifan Gao | Haoming Jiang | Qingyu Yin | Zheng Li | Xifeng Yan | Chao Zhang | Bing Yin
Findings of the Association for Computational Linguistics: ACL 2023

Answering complex questions often requires reasoning over knowledge graphs (KGs). State-of-the-art methods often utilize entities in questions to retrieve local subgraphs, which are then fed into KG encoder, e.g. graph neural networks (GNNs), to model their local structures and integrated into language models for question answering. However, this paradigm constrains retrieved knowledge in local subgraphs and discards more diverse triplets buried in KGs that are disconnected but useful for question answering. In this paper, we propose a simple yet effective method to first retrieve the most relevant triplets from KGs and then rerank them, which are then concatenated with questions to be fed into language models. Extensive results on both CommonsenseQA and OpenbookQA datasets show that our method can outperform state-of-the-art up to 4.6% absolute accuracy.

pdf bib
Knowledge-Selective Pretraining for Attribute Value Extraction
Hui Liu | Qingyu Yin | Zhengyang Wang | Chenwei Zhang | Haoming Jiang | Yifan Gao | Zheng Li | Xian Li | Chao Zhang | Bing Yin | William Wang | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Attribute Value Extraction (AVE) aims to retrieve the values of attributes from the product profiles. The state-of-the-art methods tackle the AVE task through a question-answering (QA) paradigm, where the value is predicted from the context (i.e. product profile) given a query (i.e. attributes). Despite of the substantial advancements that have been made, the performance of existing methods on rare attributes is still far from satisfaction, and they cannot be easily extended to unseen attributes due to the poor generalization ability. In this work, we propose to leverage pretraining and transfer learning to address the aforementioned weaknesses. We first collect the product information from various E-commerce stores and retrieve a large number of (profile, attribute, value) triples, which will be used as the pretraining corpus. To more effectively utilize the retrieved corpus, we further design a Knowledge-Selective Framework (KSelF) based on query expansion that can be closely combined with the pretraining corpus to boost the performance. Meanwhile, considering the public AE-pub dataset contains considerable noise, we construct and contribute a larger benchmark EC-AVE collected from E-commerce websites. We conduct evaluation on both of these datasets. The experimental results demonstrate that our proposed KSelF achieves new state-of-the-art performance without pretraining. When incorporated with the pretraining corpus, the performance of KSelF can be further improved, particularly on the attributes with limited training resources.

pdf bib
Improving Consistency for Text Summarization with Energy Functions
Qi Zeng | Qingyu Yin | Zheng Li | Yifan Gao | Sreyashi Nag | Zhengyang Wang | Bing Yin | Heng Ji | Chao Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

Current abstractive summarization models often generate inconsistent content, i.e. texts that are not directly inferable from the source document, are not consistent with respect to world knowledge, or are self-contradictory. These inconsistencies motivate a new consistency taxonomy that we define as faithfulness, factuality, and self-supportiveness. However, most recent work on reducing inconsistency in document summarization only focuses on faithfulness detection and correction while ignoring other inconsistency phenomena, which limits the model’s scalability. To improve the general consistency we introduce EnergySum, where we apply the Residual Energy-based Model by designing energy scorers that reflect each type of consistency. These energy scores are utilized in candidate re-ranking during the sampling process. Experiments on XSUM and CNN/DM datasets show that EnergySum mitigates the trade-off between accuracy and consistency.

pdf bib
Context-Aware Query Rewriting for Improving Users’ Search Experience on E-commerce Websites
Simiao Zuo | Qingyu Yin | Haoming Jiang | Shaohui Xi | Bing Yin | Chao Zhang | Tuo Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

E-commerce queries are often short and ambiguous. Consequently, query understanding often uses query rewriting to disambiguate user-input queries. While using e-commerce search tools, users tend to enter multiple searches, which we call context, before purchasing. These history searches contain contextual insights about users’ true shopping intents. Therefore, modeling such contextual information is critical to a better query rewriting model. However, existing query rewriting models ignore users’ history behaviors and consider only the instant search query, which is often a short string offering limited information about the true shopping intent. We propose an end-to-end context-aware query rewriting model to bridge this gap, which takes the search context into account. Specifically, our model builds a session graph using the history search queries and their contained words. We then employ a graph attention mechanism that models cross-query relations and computes contextual information of the session. The model subsequently calculates session representations by combining the contextual information with the instant search query using an aggregation network. The session representations are then decoded to generate rewritten queries. Empirically, we demonstrate the superiority of our method to state-of-the-art approaches under various metrics.

2022

pdf bib
SEQZERO: Few-shot Compositional Semantic Parsing with Sequential Prompts and Zero-shot Models
Jingfeng Yang | Haoming Jiang | Qingyu Yin | Danqing Zhang | Bing Yin | Diyi Yang
Findings of the Association for Computational Linguistics: NAACL 2022

Recent research showed promising results on combining pretrained language models (LMs) with canonical utterance for few-shot semantic parsing. The canonical utterance is often lengthy and complex due to the compositional structure of formal languages. Learning to generate such canonical utterance requires significant amount of data to reach high performance. Fine-tuning with only few-shot samples, the LMs can easily forget pretrained knowledge, overfit spurious biases, and suffer from compositionally out-of-distribution generalization errors. To tackle these issues, we propose a novel few-shot semantic parsing method – SEQZERO. SEQZERO decomposes the problem into a sequence of sub-problems, which corresponds to the sub-clauses of the formal language. Based on the decomposition, the LMs only need to generate short answers using prompts for predicting sub-clauses. Thus, SEQZERO avoids generating a long canonical utterance at once. Moreover, SEQZERO employs not only a few-shot model but also a zero-shot model to alleviate the overfitting.In particular, SEQZERO brings out the merits from both models via ensemble equipped with our proposed constrained rescaling.SEQZERO achieves SOTA performance of BART-based models on GeoQuery and EcommerceQuery, which are two few-shot datasets with compositional data split.

pdf bib
Retrieval-Augmented Multilingual Keyphrase Generation with Retriever-Generator Iterative Training
Yifan Gao | Qingyu Yin | Zheng Li | Rui Meng | Tong Zhao | Bing Yin | Irwin King | Michael Lyu
Findings of the Association for Computational Linguistics: NAACL 2022

Keyphrase generation is the task of automatically predicting keyphrases given a piece of long text. Despite its recent flourishing, keyphrase generation on non-English languages haven’t been vastly investigated. In this paper, we call attention to a new setting named multilingual keyphrase generation and we contribute two new datasets, EcommerceMKP and AcademicMKP, covering six languages. Technically, we propose a retrieval-augmented method for multilingual keyphrase generation to mitigate the data shortage problem in non-English languages. The retrieval-augmented model leverages keyphrase annotations in English datasets to facilitate generating keyphrases in low-resource languages. Given a non-English passage, a cross-lingual dense passage retrieval module finds relevant English passages. Then the associated English keyphrases serve as external knowledge for keyphrase generation in the current language. Moreover, we develop a retriever-generator iterative training algorithm to mine pseudo parallel passage pairs to strengthen the cross-lingual passage retriever. Comprehensive experiments and ablations show that the proposed approach outperforms all baselines.

pdf bib
All Information is Valuable: Question Matching over Full Information Transmission Network
Le Qi | Yu Zhang | Qingyu Yin | Guidong Zheng | Wen Junjie | Jinlong Li | Ting Liu
Findings of the Association for Computational Linguistics: NAACL 2022

Question matching is the task of identifying whether two questions have the same intent. For better reasoning the relationship between questions, existing studies adopt multiple interaction modules and perform multi-round reasoning via deep neural networks. In this process, there are two kinds of critical information that are commonly employed: the representation information of original questions and the interactive information between pairs of questions. However, previous studies tend to transmit only one kind of information, while failing to utilize both kinds of information simultaneously. To address this problem, in this paper, we propose a Full Information Transmission Network (FITN) that can transmit both representation and interactive information together in a simultaneous fashion. More specifically, we employ a novel memory-based attention for keeping and transmitting the interactive information through a global interaction matrix. Besides, we apply an original-average mixed connection method to effectively transmit the representation information between different reasoning rounds, which helps to preserve the original representation features of questions along with the historical hidden features. Experiments on two standard benchmarks demonstrate that our approach outperforms strong baseline models.

pdf bib
CERES: Pretraining of Graph-Conditioned Transformer for Semi-Structured Session Data
Rui Feng | Chen Luo | Qingyu Yin | Bing Yin | Tuo Zhao | Chao Zhang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

User sessions empower many search and recommendation tasks on a daily basis. Such session data are semi-structured, which encode heterogeneous relations between queries and products, and each item is described by the unstructured text. Despite recent advances in self-supervised learning for text or graphs, there lack of self-supervised learning models that can effectively capture both intra-item semantics and inter-item interactions for semi-structured sessions. To fill this gap, we propose CERES, a graph-based transformer model for semi-structured session data. CERES learns representations that capture both inter- and intra-item semantics with (1) a graph-conditioned masked language pretraining task that jointly learns from item text and item-item relations; and (2) a graph-conditioned transformer architecture that propagates inter-item contexts to item-level representations. We pretrained CERES using ~468 million Amazon sessions and find that CERES outperforms strong pretraining baselines by up to 9% in three session search and entity linking tasks.

2021

pdf bib
Logic-level Evidence Retrieval and Graph-based Verification Network for Table-based Fact Verification
Qi Shi | Yu Zhang | Qingyu Yin | Ting Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that contain rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.

2020

pdf bib
Learn to Combine Linguistic and Symbolic Information for Table-based Fact Verification
Qi Shi | Yu Zhang | Qingyu Yin | Ting Liu
Proceedings of the 28th International Conference on Computational Linguistics

Table-based fact verification is expected to perform both linguistic reasoning and symbolic reasoning. Existing methods lack attention to take advantage of the combination of linguistic information and symbolic information. In this work, we propose HeterTFV, a graph-based reasoning approach, that learns to combine linguistic information and symbolic information effectively. We first construct a program graph to encode programs, a kind of LISP-like logical form, to learn the semantic compositionality of the programs. Then we construct a heterogeneous graph to incorporate both linguistic information and symbolic information by introducing program nodes into the heterogeneous graph. Finally, we propose a graph-based reasoning approach to reason over the multiple types of nodes to make an effective combination of both types of information. Experimental results on a large-scale benchmark dataset TABFACT illustrate the effect of our approach.

2019

pdf bib
Towards Explainable NLP: A Generative Explanation Framework for Text Classification
Hui Liu | Qingyu Yin | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Building explainable systems is a critical problem in the field of Natural Language Processing (NLP), since most machine learning models provide no explanations for the predictions. Existing approaches for explainable machine learning systems tend to focus on interpreting the outputs or the connections between inputs and outputs. However, the fine-grained information (e.g. textual explanations for the labels) is often ignored, and the systems do not explicitly generate the human-readable explanations. To solve this problem, we propose a novel generative explanation framework that learns to make classification decisions and generate fine-grained explanations at the same time. More specifically, we introduce the explainable factor and the minimum risk training approach that learn to generate more reasonable explanations. We construct two new datasets that contain summaries, rating scores, and fine-grained reasons. We conduct experiments on both datasets, comparing with several strong neural network baseline systems. Experimental results show that our method surpasses all baselines on both datasets, and is able to generate concise explanations at the same time.

2018

pdf bib
Zero Pronoun Resolution with Attention-based Neural Network
Qingyu Yin | Yu Zhang | Weinan Zhang | Ting Liu | William Yang Wang
Proceedings of the 27th International Conference on Computational Linguistics

Recent neural network methods for zero pronoun resolution explore multiple models for generating representation vectors for zero pronouns and their candidate antecedents. Typically, contextual information is utilized to encode the zero pronouns since they are simply gaps that contain no actual content. To better utilize contexts of the zero pronouns, we here introduce the self-attention mechanism for encoding zero pronouns. With the help of the multiple hops of attention, our model is able to focus on some informative parts of the associated texts and therefore produces an efficient way of encoding the zero pronouns. In addition, an attention-based recurrent neural network is proposed for encoding candidate antecedents by their contents. Experiment results are encouraging: our proposed attention-based model gains the best performance on the Chinese portion of the OntoNotes corpus, substantially surpasses existing Chinese zero pronoun resolution baseline systems.

pdf bib
Deep Reinforcement Learning for Chinese Zero Pronoun Resolution
Qingyu Yin | Yu Zhang | Wei-Nan Zhang | Ting Liu | William Yang Wang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent neural network models for Chinese zero pronoun resolution gain great performance by capturing semantic information for zero pronouns and candidate antecedents, but tend to be short-sighted, operating solely by making local decisions. They typically predict coreference links between the zero pronoun and one single candidate antecedent at a time while ignoring their influence on future decisions. Ideally, modeling useful information of preceding potential antecedents is crucial for classifying later zero pronoun-candidate antecedent pairs, a need which leads traditional models of zero pronoun resolution to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to deal with the task. With the help of the reinforcement learning agent, our system learns the policy of selecting antecedents in a sequential manner, where useful information provided by earlier predicted antecedents could be utilized for making later coreference decisions. Experimental results on OntoNotes 5.0 show that our approach substantially outperforms the state-of-the-art methods under three experimental settings.

2017

pdf bib
Chinese Zero Pronoun Resolution with Deep Memory Network
Qingyu Yin | Yu Zhang | Weinan Zhang | Ting Liu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Existing approaches for Chinese zero pronoun resolution typically utilize only syntactical and lexical features while ignoring semantic information. The fundamental reason is that zero pronouns have no descriptive information, which brings difficulty in explicitly capturing their semantic similarities with antecedents. Meanwhile, representing zero pronouns is challenging since they are merely gaps that convey no actual content. In this paper, we address this issue by building a deep memory network that is capable of encoding zero pronouns into vector representations with information obtained from their contexts and potential antecedents. Consequently, our resolver takes advantage of semantic information by using these continuous distributed representations. Experiments on the OntoNotes 5.0 dataset show that the proposed memory network could substantially outperform the state-of-the-art systems in various experimental settings.

pdf bib
Generating and Exploiting Large-scale Pseudo Training Data for Zero Pronoun Resolution
Ting Liu | Yiming Cui | Qingyu Yin | Wei-Nan Zhang | Shijin Wang | Guoping Hu
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most existing approaches for zero pronoun resolution are heavily relying on annotated data, which is often released by shared task organizers. Therefore, the lack of annotated data becomes a major obstacle in the progress of zero pronoun resolution task. Also, it is expensive to spend manpower on labeling the data for better performance. To alleviate the problem above, in this paper, we propose a simple but novel approach to automatically generate large-scale pseudo training data for zero pronoun resolution. Furthermore, we successfully transfer the cloze-style reading comprehension neural network model into zero pronoun resolution task and propose a two-step training mechanism to overcome the gap between the pseudo training data and the real one. Experimental results show that the proposed approach significantly outperforms the state-of-the-art systems with an absolute improvements of 3.1% F-score on OntoNotes 5.0 data.