Rachneet Kaur
2025
LAW: Legal Agentic Workflows for Custody and Fund Services Contracts
William Watson
|
Nicole Cho
|
Nishan Srishankar
|
Zhen Zeng
|
Lucas Cecchi
|
Daniel Scott
|
Suchetha Siddagangappa
|
Rachneet Kaur
|
Tucker Balch
|
Manuela Veloso
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track
Legal contracts in the custody and fund services domain govern critical aspects such as key provider responsibilities, fee schedules, and indemnification rights. However, it is challenging for an off-the-shelf Large Language Model (LLM) to ingest these contracts due to the lengthy unstructured streams of text, limited LLM context windows, and complex legal jargon. To address these challenges, we introduce LAW (Legal Agentic Workflows for Custody and Fund Services Contracts). LAW features a modular design that responds to user queries by orchestrating a suite of domain-specific tools and text agents. Our experiments demonstrate that LAW, by integrating multiple specialized agents and tools, significantly outperforms the baseline. LAW excels particularly in complex tasks such as calculating a contract’s termination date, surpassing the baseline by 92.9% points. Furthermore, LAW offers a cost-effective alternative to traditional fine-tuned legal LLMs by leveraging reusable, domain-specific tools.
2024
Evaluating Large Language Models on Time Series Feature Understanding: A Comprehensive Taxonomy and Benchmark
Elizabeth Fons
|
Rachneet Kaur
|
Soham Palande
|
Zhen Zeng
|
Tucker Balch
|
Manuela Veloso
|
Svitlana Vyetrenko
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) offer the potential for automatic time series analysis and reporting, which is a critical task across many domains, spanning healthcare, finance, climate, energy, and many more. In this paper, we propose a framework for rigorously evaluating the capabilities of LLMs on time series understanding, encompassing both univariate and multivariate forms. We introduce a comprehensive taxonomy of time series features, a critical framework that delineates various characteristics inherent in time series data. Leveraging this taxonomy, we have systematically designed and synthesized a diverse dataset of time series, embodying the different outlined features, each accompanied by textual descriptions. This dataset acts as a solid foundation for assessing the proficiency of LLMs in comprehending time series. Our experiments shed light on the strengths and limitations of state-of-the-art LLMs in time series understanding, revealing which features these models readily comprehend effectively and where they falter. In addition, we uncover the sensitivity of LLMs to factors including the formatting of the data, the position of points queried within a series and the overall time series length.
Search
Fix data
Co-authors
- Tucker Balch 2
- Manuela Veloso 2
- Zhen Zeng 2
- Lucas Cecchi 1
- Nicole Cho 1
- show all...