Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn’t require speech data during LLM pre-training and can exploit LLM’s multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data.
Word segmentation, the problem of finding word boundaries in speech, is of interest for a range of tasks. Previous papers have suggested that for sequence-to-sequence models trained on tasks such as speech translation or speech recognition, attention can be used to locate and segment the words. We show, however, that even on monolingual data this approach is brittle. In our experiments with different input types, data sizes, and segmentation algorithms, only models trained to predict phones from words succeed in the task. Models trained to predict words from either phones or speech (i.e., the opposite direction needed to generalize to new data), yield much worse results, suggesting that attention-based segmentation is only useful in limited scenarios.
Multimodal automatic speech recognition systems integrate information from images to improve speech recognition quality, by grounding the speech in the visual context. While visual signals have been shown to be useful for recovering entities that have been masked in the audio, these models should be capable of recovering a broader range of word types. Existing systems rely on global visual features that represent the entire image, but localizing the relevant regions of the image will make it possible to recover a larger set of words, such as adjectives and verbs. In this paper, we propose a model that uses finer-grained visual information from different parts of the image, using automatic object proposals. In experiments on the Flickr8K Audio Captions Corpus, we find that our model improves over approaches that use global visual features, that the proposals enable the model to recover entities and other related words, such as adjectives, and that improvements are due to the model’s ability to localize the correct proposals.
Visual context has been shown to be useful for automatic speech recognition (ASR) systems when the speech signal is noisy or corrupted. Previous work, however, has only demonstrated the utility of visual context in an unrealistic setting, where a fixed set of words are systematically masked in the audio. In this paper, we simulate a more realistic masking scenario during model training, called RandWordMask, where the masking can occur for any word segment. Our experiments on the Flickr 8K Audio Captions Corpus show that multimodal ASR can generalize to recover different types of masked words in this unstructured masking setting. Moreover, our analysis shows that our models are capable of attending to the visual signal when the audio signal is corrupted. These results show that multimodal ASR systems can leverage the visual signal in more generalized noisy scenarios.
The IWSLT 2019 evaluation campaign featured three tasks: speech translation of (i) TED talks and (ii) How2 instructional videos from English into German and Portuguese, and (iii) text translation of TED talks from English into Czech. For the first two tasks we encouraged submissions of end- to-end speech-to-text systems, and for the second task participants could also use the video as additional input. We received submissions by 12 research teams. This overview provides detailed descriptions of the data and evaluation conditions of each task and reports results of the participating systems.
In Neural Machine Translation (NMT) the usage of sub-words and characters as source and target units offers a simple and flexible solution for translation of rare and unseen words. However, selecting the optimal subword segmentation involves a trade-off between expressiveness and flexibility, and is language and dataset-dependent. We present Block Multitask Learning (BMTL), a novel NMT architecture that predicts multiple targets of different granularities simulta- neously, removing the need to search for the optimal seg- mentation strategy. Our multi-task model exhibits improvements of up to 1.7 BLEU points on each decoder over single-task baseline models with the same number of parameters on datasets from two language pairs of IWSLT15 and one from IWSLT19. The multiple hypotheses generated at different granularities can also be combined as a post-processing step to give better translations.
In Neural Machine Translation (NMT) the usage of subwords and characters as source and target units offers a simple and flexible solution for translation of rare and unseen words. However, selecting the optimal subword segmentation involves a trade-off between expressiveness and flexibility, and is language and dataset-dependent. We present Block Multitask Learning (BMTL), a novel NMT architecture that predicts multiple targets of different granularities simultaneously, removing the need to search for the optimal segmentation strategy. Our multi-task model exhibits improvements of up to 1.7 BLEU points on each decoder over single-task baseline models with the same number of parameters on datasets from two language pairs of IWSLT15 and one from IWSLT19. The multiple hypotheses generated at different granularities can be combined as a post-processing step to give better translations, which improves over hypothesis combination from baseline models while using substantially fewer parameters.