Rejwanul Haque


2024

pdf bib
The SETU-DCU Submissions to IWSLT 2024 Low-Resource Speech-to-Text Translation Tasks
Maria Zafar | Antonio Castaldo | Prashanth Nayak | Rejwanul Haque | Neha Gajakos | Andy Way
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

Natural Language Processing (NLP) research and development has experienced rapid progression in the recent times due to advances in deep learning. The introduction of pre-trained large language models (LLMs) is at the core of this transformation, significantly enhancing the performance of machine translation (MT) and speech technologies. This development has also led to fundamental changes in modern translation and speech tools and their methodologies. However, there remain challenges when extending this progress to underrepresented dialects and low-resource languages, primarily due to the need for more data. This paper details our submissions to the IWSLT speech translation (ST) tasks. We used the Whisper model for the automatic speech recognition (ASR) component. We then used mBART and NLLB as cascaded systems for utilising their MT capabilities. Our research primarily focused on exploring various dialects of low-resource languages and harnessing existing resources from linguistically related languages. We conducted our experiments for two morphologically diverse language pairs: Irish-to-English and Maltese-to-English. We used BLEU, chrF and COMET for evaluating our MT models.

2023

pdf bib
Instance-Based Domain Adaptation for Improving Terminology Translation
Prashanth Nayak | John Kelleher | Rejwanul Haque | Andy Way
Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track

Terms are essential indicators of a domain, and domain term translation is dealt with priority in any translation workflow. Translation service providers who use machine translation (MT) expect term translation to be unambiguous and consistent with the context and domain in question. Although current state-of-the-art neural MT (NMT) models are able to produce high-quality translations for many languages, they are still not at the level required when it comes to translating domain-specific terms. This study presents a terminology-aware instance- based adaptation method for improving terminology translation in NMT. We conducted our experiments for French-to-English and found that our proposed approach achieves a statistically significant improvement over the baseline NMT system in translating domain-specific terms. Specifically, the translation of multi-word terms is improved by 6.7% compared to the strong baseline.

pdf bib
Domain Terminology Integration into Machine Translation: Leveraging Large Language Models
Yasmin Moslem | Gianfranco Romani | Mahdi Molaei | John D. Kelleher | Rejwanul Haque | Andy Way
Proceedings of the Eighth Conference on Machine Translation

This paper discusses the methods that we used for our submissions to the WMT 2023 Terminology Shared Task for German-to-English (DE-EN), English-to-Czech (EN-CS), and Chinese-to-English (ZH-EN) language pairs. The task aims to advance machine translation (MT) by challenging participants to develop systems that accurately translate technical terms, ultimately enhancing communication and understanding in specialised domains. To this end, we conduct experiments that utilise large language models (LLMs) for two purposes: generating synthetic bilingual terminology-based data, and post-editing translations generated by an MT model through incorporating pre-approved terms. Our system employs a four-step process: (i) using an LLM to generate bilingual synthetic data based on the provided terminology, (ii) fine-tuning a generic encoder-decoder MT model, with a mix of the terminology-based synthetic data generated in the first step and a randomly sampled portion of the original generic training data, (iii) generating translations with the fine-tuned MT model, and (iv) finally, leveraging an LLM for terminology-constrained automatic post-editing of the translations that do not include the required terms. The results demonstrate the effectiveness of our proposed approach in improving the integration of pre-approved terms into translations. The number of terms incorporated into the translations of the blind dataset increases from an average of 36.67% with the generic model to an average of 72.88% by the end of the process. In other words, successful utilisation of terms nearly doubles across the three language pairs.

pdf bib
Adaptive Machine Translation with Large Language Models
Yasmin Moslem | Rejwanul Haque | John D. Kelleher | Andy Way
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

Consistency is a key requirement of high-quality translation. It is especially important to adhere to pre-approved terminology and adapt to corrected translations in domain-specific projects. Machine translation (MT) has achieved significant progress in the area of domain adaptation. However, real-time adaptation remains challenging. Large-scale language models (LLMs) have recently shown interesting capabilities of in-context learning, where they learn to replicate certain input-output text generation patterns, without further fine-tuning. By feeding an LLM at inference time with a prompt that consists of a list of translation pairs, it can then simulate the domain and style characteristics. This work aims to investigate how we can utilize in-context learning to improve real-time adaptive MT. Our extensive experiments show promising results at translation time. For example, GPT-3.5 can adapt to a set of in-domain sentence pairs and/or terminology while translating a new sentence. We observe that the translation quality with few-shot in-context learning can surpass that of strong encoder-decoder MT systems, especially for high-resource languages. Moreover, we investigate whether we can combine MT from strong encoder-decoder models with fuzzy matches, which can further improve translation quality, especially for less supported languages. We conduct our experiments across five diverse language pairs, namely English-to-Arabic (EN-AR), English-to-Chinese (EN-ZH), English-to-French (EN-FR), English-to-Kinyarwanda (EN-RW), and English-to-Spanish (EN-ES).

2022

pdf bib
Domain-Specific Text Generation for Machine Translation
Yasmin Moslem | Rejwanul Haque | John Kelleher | Andy Way
Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

Preservation of domain knowledge from the source to target is crucial in any translation workflow. It is common in the translation industry to receive highly-specialized projects, where there is hardly any parallel in-domain data. In such scenarios where there is insufficient in-domain data to fine-tune Machine Translation (MT) models, producing translations that are consistent with the relevant context is challenging. In this work, we propose leveraging state-of-the-art pretrained language models (LMs) for domain-specific data augmentation for MT, simulating the domain characteristics of either (a) a small bilingual dataset, or (b) the monolingual source text to be translated. Combining this idea with back-translation, we can generate huge amounts of synthetic bilingual in-domain data for both use cases. For our investigation, we used the state-of-the-art MT architecture, Transformer. We employed mixed fine-tuning to train models that significantly improve translation of in-domain texts. More specifically, our proposed methods achieved improvements of approximately 5-6 BLEU and 2-3 BLEU, respectively, on Arabic-to-English and English-to-Arabic language pairs. Furthermore, the outcome of human evaluation corroborates the automatic evaluation results.

pdf bib
Knowledge Distillation for Sustainable Neural Machine Translation
Wandri Jooste | Andy Way | Rejwanul Haque | Riccardo Superbo
Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas (Volume 2: Users and Providers Track and Government Track)

Knowledge distillation (KD) can be used to reduce model size and training time, without significant loss in performance. However, the process of distilling knowledge requires translation of sizeable data sets, and the translation is usually performed using large cumbersome models (teacher models). Producing such translations for KD is expensive in terms of both time and cost, which is a significant concern for translation service providers. On top of that, this process can be the cause of higher carbon footprints. In this work, we tested different variants of a teacher model for KD, tracked the power consumption of the GPUs used during translation, recorded overall translation time, estimated translation cost, and measured the accuracy of the student models. The findings of our investigation demonstrate to the translation industry a cost-effective, high-quality alternative to the standard KD training methods.

pdf bib
Detecting Violation of Human Rights via Social Media
Yash Pilankar | Rejwanul Haque | Mohammed Hasanuzzaman | Paul Stynes | Pramod Pathak
Proceedings of the First Computing Social Responsibility Workshop within the 13th Language Resources and Evaluation Conference

Social media is not just meant for entertainment, it provides platforms for sharing information, news, facts and events. In the digital age, activists and numerous users are seen to be vocal regarding human rights and their violations in social media. However, their voices do not often reach to the targeted audience and concerned human rights organization. In this work, we aimed at detecting factual posts in social media about violation of human rights in any part of the world. The end product of this research can be seen as an useful asset for different peacekeeping organizations who could exploit it to monitor real-time circumstances about any incident in relation to violation of human rights. We chose one of the popular micro-blogging websites, Twitter, for our investigation. We used supervised learning algorithms in order to build human rights violation identification (HRVI) models which are able to identify Tweets in relation to incidents of human right violation. For this, we had to manually create a data set, which is one of the contributions of this research. We found that our classification models that were trained on this gold-standard dataset performed excellently in classifying factual Tweets about human rights violation, achieving an accuracy of upto 93% on hold-out test set.

pdf bib
Identifying Emotions in Code Mixed Hindi-English Tweets
Sanket Sonu | Rejwanul Haque | Mohammed Hasanuzzaman | Paul Stynes | Pramod Pathak
Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference

Emotion detection (ED) in tweets is a text classification problem that is of interest to Natural Language Processing (NLP) researchers. Code-mixing (CM) is a process of mixing linguistic units such as words of two different languages. The CM languages are characteristically different from the languages whose linguistic units are used for mixing. Whilst NLP has been shown to be successful for low-resource languages, it becomes challenging to perform NLP tasks on CM languages. As for ED, it has been rarely investigated on CM languages such as Hindi—English due to the lack of training data that is required for today’s data-driven classification algorithms. This research proposes a gold standard dataset for detecting emotions in CM Hindi–English tweets. This paper also presents our results about the investigation of the usefulness of our gold-standard dataset while testing a number of state-of-the-art classification algorithms. We found that the ED classifier built using SVM provided us the highest accuracy (75.17%) on the hold-out test set. This research would benefit the NLP community in detecting emotions from social media platforms in multilingual societies.

pdf bib
Translation Word-Level Auto-Completion: What Can We Achieve Out of the Box?
Yasmin Moslem | Rejwanul Haque | Andy Way
Proceedings of the Seventh Conference on Machine Translation (WMT)

Research on Machine Translation (MT) has achieved important breakthroughs in several areas. While there is much more to be done in order to build on this success, we believe that the language industry needs better ways to take full advantage of current achievements. Due to a combination of factors, including time, resources, and skills, businesses tend to apply pragmatism into their AI workflows. Hence, they concentrate more on outcomes, e.g. delivery, shipping, releases, and features, and adopt high-level working production solutions, where possible. Among the features thought to be helpful for translators are sentence-level and word-level translation auto-suggestion and auto-completion. Suggesting alternatives can inspire translators and limit their need to refer to external resources, which hopefully boosts their productivity. This work describes our submissions to WMT’s shared task on word-level auto-completion, for the Chinese-to-English, English-to-Chinese, German-to-English, and English-to-German language directions. We investigate the possibility of using pre-trained models and out-of-the-box features from available libraries. We employ random sampling to generate diverse alternatives, which reveals good results. Furthermore, we introduce our open-source API, based on CTranslate2, to serve translations, auto-suggestions, and auto-completions.

2021

pdf bib
Investigating Active Learning in Interactive Neural Machine Translation
Kamal Gupta | Dhanvanth Boppana | Rejwanul Haque | Asif Ekbal | Pushpak Bhattacharyya
Proceedings of Machine Translation Summit XVIII: Research Track

Interactive-predictive translation is a collaborative iterative process and where human translators produce translations with the help of machine translation (MT) systems interactively. Various sampling techniques in active learning (AL) exist to update the neural MT (NMT) model in the interactive-predictive scenario. In this paper and we explore term based (named entity count (NEC)) and quality based (quality estimation (QE) and sentence similarity (Sim)) sampling techniques – which are used to find the ideal candidates from the incoming data – for human supervision and MT model’s weight updation. We carried out experiments with three language pairs and viz. German-English and Spanish-English and Hindi-English. Our proposed sampling technique yields 1.82 and 0.77 and 0.81 BLEU points improvements for German-English and Spanish-English and Hindi-English and respectively and over random sampling based baseline. It also improves the present state-of-the-art by 0.35 and 0.12 BLEU points for German-English and Spanish-English and respectively. Human editing effort in terms of number-of-words-changed also improves by 5 and 4 points for German-English and Spanish-English and respectively and compared to the state-of-the-art.

2020

pdf bib
The ADAPT System Description for the WMT20 News Translation Task
Venkatesh Parthasarathy | Akshai Ramesh | Rejwanul Haque | Andy Way
Proceedings of the Fifth Conference on Machine Translation

This paper describes the ADAPT Centre’s submissions to the WMT20 News translation shared task for English-to-Tamil and Tamil-to-English. We present our machine translation (MT) systems that were built using the state-of-the-art neural MT (NMT) model, Transformer. We applied various strategies in order to improve our baseline MT systems, e.g. onolin- gual sentence selection for creating synthetic training data, mining monolingual sentences for adapting our MT systems to the task, hyperparameters search for Transformer in lowresource scenarios. Our experiments show that adding the aforementioned techniques to the baseline yields an excellent performance in the English-to-Tamil and Tamil-to-English translation tasks.

pdf bib
The ADAPT’s Submissions to the WMT20 Biomedical Translation Task
Prashant Nayak | Rejwanul Haque | Andy Way
Proceedings of the Fifth Conference on Machine Translation

This paper describes the ADAPT Centre’s submissions to the WMT20 Biomedical Translation Shared Task for English-to-Basque. We present the machine translation (MT) systems that were built to translate scientific abstracts and terms from biomedical terminologies, and using the state-of-the-art neural MT (NMT) model: Transformer. In order to improve our baseline NMT system, we employ a number of methods, e.g. “pseudo” parallel data selection, monolingual data selection for synthetic corpus creation, mining monolingual sentences for adapting our NMT systems to this task, hyperparameters search for Transformer in lowresource scenarios. Our experiments show that systematic addition of the aforementioned techniques to the baseline yields an excellent performance in the English-to-Basque translation task.

pdf bib
Arabisc: Context-Sensitive Neural Spelling Checker
Yasmin Moslem | Rejwanul Haque | Andy Way
Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications

Traditional statistical approaches to spelling correction usually consist of two consecutive processes — error detection and correction — and they are generally computationally intensive. Current state-of-the-art neural spelling correction models usually attempt to correct spelling errors directly over an entire sentence, which, as a consequence, lacks control of the process, e.g. they are prone to overcorrection. In recent years, recurrent neural networks (RNNs), in particular long short-term memory (LSTM) hidden units, have proven increasingly popular and powerful models for many natural language processing (NLP) problems. Accordingly, we made use of a bidirectional LSTM language model (LM) for our context-sensitive spelling detection and correction model which is shown to have much control over the correction process. While the use of LMs for spelling checking and correction is not new to this line of NLP research, our proposed approach makes better use of the rich neighbouring context, not only from before the word to be corrected, but also after it, via a dual-input deep LSTM network. Although in theory our proposed approach can be applied to any language, we carried out our experiments on Arabic, which we believe adds additional value given the fact that there are limited linguistic resources readily available in Arabic in comparison to many languages. Our experimental results demonstrate that the proposed methods are effective in both improving the quality of correction suggestions and minimising overcorrection.

pdf bib
Modelling Source- and Target- Language Syntactic Information as Conditional Context in Interactive Neural Machine Translation
Kamal Kumar Gupta | Rejwanul Haque | Asif Ekbal | Pushpak Bhattacharyya | Andy Way
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

In interactive machine translation (MT), human translators correct errors in automatic translations in collaboration with the MT systems, which is seen as an effective way to improve the productivity gain in translation. In this study, we model source-language syntactic constituency parse and target-language syntactic descriptions in the form of supertags as conditional context for interactive prediction in neural MT (NMT). We found that the supertags significantly improve productivity gain in translation in interactive-predictive NMT (INMT), while syntactic parsing somewhat found to be effective in reducing human effort in translation. Furthermore, when we model this source- and target-language syntactic information together as the conditional context, both types complement each other and our fully syntax-informed INMT model statistically significantly reduces human efforts in a French–to–English translation task, achieving 4.30 points absolute (corresponding to 9.18% relative) improvement in terms of word prediction accuracy (WPA) and 4.84 points absolute (corresponding to 9.01% relative) reduction in terms of word stroke ratio (WSR) over the baseline.

pdf bib
Identifying Complaints from Product Reviews: A Case Study on Hindi
Raghvendra Pratap Singh | Rejwanul Haque | Mohammed Hasanuzzaman | Andy Way
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

Automatic recognition of customer complaints on products or services that they purchase can be crucial for the organisations, multinationals and online retailers since they can exploit this information to fulfil their customers’ expectations including managing and resolving the complaints. Recently, researchers have applied supervised learning strategies to automatically identify users’ complaints expressed in English on Twitter. The downside of these approaches is that they require labeled training data for learning, which is expensive to create. This poses a barrier for them being applied to low-resource languages and domains for which task-specific data is not available. Machine translation (MT) can be used as an alternative to the tools that require such task-specific data. In this work, we use state-of-the-art neural MT (NMT) models for translating Hindi reviews into English and investigate performance of the downstream classification task (complaints identification) on their English translations.

pdf bib
Terminology-Aware Sentence Mining for NMT Domain Adaptation: ADAPT’s Submission to the Adap-MT 2020 English-to-Hindi AI Translation Shared Task
Rejwanul Haque | Yasmin Moslem | Andy Way
Proceedings of the 17th International Conference on Natural Language Processing (ICON): Adap-MT 2020 Shared Task

This paper describes the ADAPT Centre’s submission to the Adap-MT 2020 AI Translation Shared Task for English-to-Hindi. The neural machine translation (NMT) systems that we built to translate AI domain texts are state-of-the-art Transformer models. In order to improve the translation quality of our NMT systems, we made use of both in-domain and out-of-domain data for training and employed different fine-tuning techniques for adapting our NMT systems to this task, e.g. mixed fine-tuning and on-the-fly self-training. For this, we mined parallel sentence pairs and monolingual sentences from large out-of-domain data, and the mining process was facilitated through automatic extraction of terminology from the in-domain data. This paper outlines the experiments we carried out for this task and reports the performance of our NMT systems on the evaluation test set.

pdf bib
The ADAPT Centre’s Participation in WAT 2020 English-to-Odia Translation Task
Prashanth Nayak | Rejwanul Haque | Andy Way
Proceedings of the 7th Workshop on Asian Translation

This paper describes the ADAPT Centre sub-missions to WAT 2020 for the English-to-Odia translation task. We present the approaches that we followed to try to build competitive machine translation (MT) systems for English-to-Odia. Our approaches include monolingual data selection for creating synthetic data and identifying optimal sets of hyperparameters for the Transformer in a low-resource scenario. Our best MT system produces 4.96BLEU points on the evaluation test set in the English-to-Odia translation task.

pdf bib
The ADAPT Centre’s Neural MT Systems for the WAT 2020 Document-Level Translation Task
Wandri Jooste | Rejwanul Haque | Andy Way
Proceedings of the 7th Workshop on Asian Translation

In this paper we describe the ADAPT Centre’s submissions to the WAT 2020 document-level Business Scene Dialogue (BSD) Translation task. We only consider translating from Japanese to English for this task and we use the MarianNMT toolkit to train Transformer models. In order to improve the translation quality, we made use of both in-domain and out-of-domain data for training our Machine Translation (MT) systems, as well as various data augmentation techniques for fine-tuning the model parameters. This paper outlines the experiments we ran to train our systems and report the accuracy achieved through these various experiments.

pdf bib
An Error-based Investigation of Statistical and Neural Machine Translation Performance on Hindi-to-Tamil and English-to-Tamil
Akshai Ramesh | Venkatesh Balavadhani Parthasa | Rejwanul Haque | Andy Way
Proceedings of the 7th Workshop on Asian Translation

Statistical machine translation (SMT) was the state-of-the-art in machine translation (MT) research for more than two decades, but has since been superseded by neural MT (NMT). Despite producing state-of-the-art results in many translation tasks, neural models underperform in resource-poor scenarios. Despite some success, none of the present-day benchmarks that have tried to overcome this problem can be regarded as a universal solution to the problem of translation of many low-resource languages. In this work, we investigate the performance of phrase-based SMT (PB-SMT) and NMT on two rarely-tested low-resource language-pairs, English-to-Tamil and Hindi-to-Tamil, taking a specialised data domain (software localisation) into consideration. This paper demonstrates our findings including the identification of several issues of the current neural approaches to low-resource domain-specific text translation.

pdf bib
The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Translation Task
Rejwanul Haque | Yasmin Moslem | Andy Way
Proceedings of the Fourth Workshop on Neural Generation and Translation

This paper describes the ADAPT Centre’s submission to STAPLE (Simultaneous Translation and Paraphrase for Language Education) 2020, a shared task of the 4th Workshop on Neural Generation and Translation (WNGT), for the English-to-Portuguese translation task. In this shared task, the participants were asked to produce high-coverage sets of plausible translations given English prompts (input source sentences). We present our English-to-Portuguese machine translation (MT) models that were built applying various strategies, e.g. data and sentence selection, monolingual MT for generating alternative translations, and combining multiple n-best translations. Our experiments show that adding the aforementioned techniques to the baseline yields an excellent performance in the English-to-Portuguese translation task.

pdf bib
Investigating Low-resource Machine Translation for English-to-Tamil
Akshai Ramesh | Venkatesh Balavadhani parthasa | Rejwanul Haque | Andy Way
Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages

Statistical machine translation (SMT) which was the dominant paradigm in machine translation (MT) research for nearly three decades has recently been superseded by the end-to-end deep learning approaches to MT. Although deep neural models produce state-of-the-art results in many translation tasks, they are found to under-perform on resource-poor scenarios. Despite some success, none of the present-day benchmarks that have tried to overcome this problem can be regarded as a universal solution to the problem of translation of many low-resource languages. In this work, we investigate the performance of phrase-based SMT (PB-SMT) and neural MT (NMT) on a rarely-tested low-resource language-pair, English-to-Tamil, taking a specialised data domain (software localisation) into consideration. In particular, we produce rankings of our MT systems via a social media platform-based human evaluation scheme, and demonstrate our findings in the low-resource domain-specific text translation task.

2019

pdf bib
Investigating Terminology Translation in Statistical and Neural Machine Translation: A Case Study on English-to-Hindi and Hindi-to-English
Rejwanul Haque | Md Hasanuzzaman | Andy Way
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

Terminology translation plays a critical role in domain-specific machine translation (MT). In this paper, we conduct a comparative qualitative evaluation on terminology translation in phrase-based statistical MT (PB-SMT) and neural MT (NMT) in two translation directions: English-to-Hindi and Hindi-to-English. For this, we select a test set from a legal domain corpus and create a gold standard for evaluating terminology translation in MT. We also propose an error typology taking the terminology translation errors into consideration. We evaluate the MT systems’ performance on terminology translation, and demonstrate our findings, unraveling strengths, weaknesses, and similarities of PB-SMT and NMT in the area of term translation.

2014

pdf bib
DCU-Lingo24 Participation in WMT 2014 Hindi-English Translation task
Xiaofeng Wu | Rejwanul Haque | Tsuyoshi Okita | Piyush Arora | Andy Way | Qun Liu
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
Bilingual Termbank Creation via Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation
Rejwanul Haque | Sergio Penkale | Andy Way
Proceedings of the 4th International Workshop on Computational Terminology (Computerm)

2012

pdf bib
Translating User-Generated Content in the Social Networking Space
Jie Jiang | Andy Way | Rejwanul Haque
Proceedings of the 10th Conference of the Association for Machine Translation in the Americas: Commercial MT User Program

This paper presents a case-study of work done by Applied Language Solutions (ALS) for a large social networking provider who claim to have built the world’s first multi-language social network, where Internet users from all over the world can communicate in languages that are available in the system. In an initial phase, the social networking provider contracted ALS to build Machine Translation (MT) engines for twelve language-pairs: Russian⇔English, Russian⇔Turkish, Russian⇔Arabic, Turkish⇔English, Turkish⇔Arabic and Arabic⇔English. All of the input data is user-generated content, so we faced a number of problems in building large-scale, robust, high-quality engines. Primarily, much of the source-language data is of ‘poor’ or at least ‘non-standard’ quality. This comes in many forms: (i) content produced by non-native speakers, (ii) content produced by native speakers containing non-deliberate typos, or (iii) content produced by native speakers which deliberately departs from spelling norms to bring about some linguistic effect. Accordingly, in addition to the ‘regular’ pre-processing techniques used in the building of our statistical MT systems, we needed to develop routines to deal with all these scenarios. In this paper, we describe how we handle shortforms, acronyms, typos, punctuation errors, non-dictionary slang, wordplay, censor avoidance and emoticons. We demonstrate automatic evaluation scores on the social network data, together with insights from the the social networking provider regarding some of the typical errors made by the MT engines, and how we managed to correct these in the engines.

pdf bib
Monolingual Data Optimisation for Bootstrapping SMT Engines
Jie Jiang | Andy Way | Nelson Ng | Rejwanul Haque | Mike Dillinger | Jun Lu
Workshop on Monolingual Machine Translation

Content localisation via machine translation (MT) is a sine qua non, especially for international online business. While most applications utilise rule-based solutions due to the lack of suitable in-domain parallel corpora for statistical MT (SMT) training, in this paper we investigate the possibility of applying SMT where huge amounts of monolingual content only are available. We describe a case study where an analysis of a very large amount of monolingual online trading data from eBay is conducted by ALS with a view to reducing this corpus to the most representative sample in order to ensure the widest possible coverage of the total data set. Furthermore, minimal yet optimal sets of sentences/words/terms are selected for generation of initial translation units for future SMT system-building.

2010

pdf bib
Supertags as Source Language Context in Hierarchical Phrase-Based SMT
Rejwanul Haque | Sudip Naskar | Antal van den Bosch | Andy Way
Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Research Papers

Statistical machine translation (SMT) models have recently begun to include source context modeling, under the assumption that the proper lexical choice of the translation for an ambiguous word can be determined from the context in which it appears. Various types of lexical and syntactic features have been explored as effective source context to improve phrase selection in SMT. In the present work, we introduce lexico-syntactic descriptions in the form of supertags as source-side context features in the state-of-the-art hierarchical phrase-based SMT (HPB) model. These features enable us to exploit source similarity in addition to target similarity, as modelled by the language model. In our experiments two kinds of supertags are employed: those from lexicalized tree-adjoining grammar (LTAG) and combinatory categorial grammar (CCG). We use a memory-based classification framework that enables the efficient estimation of these features. Despite the differences between the two supertagging approaches, they give similar improvements. We evaluate the performance of our approach on an English-to-Dutch translation task, and report statistically significant improvements of 4.48% and 6.3% BLEU scores in translation quality when adding CCG and LTAG supertags, respectively, as context-informed features.

pdf bib
MATREX: The DCU MT System for WMT 2010
Sergio Penkale | Rejwanul Haque | Sandipan Dandapat | Pratyush Banerjee | Ankit K. Srivastava | Jinhua Du | Pavel Pecina | Sudip Kumar Naskar | Mikel L. Forcada | Andy Way
Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR

2009

pdf bib
English-Hindi Transliteration Using Context-Informed PB-SMT: the DCU System for NEWS 2009
Rejwanul Haque | Sandipan Dandapat | Ankit Kumar Srivastava | Sudip Kumar Naskar | Andy Way
Proceedings of the 2009 Named Entities Workshop: Shared Task on Transliteration (NEWS 2009)

pdf bib
Dependency Relations as Source Context in Phrase-Based SMT
Rejwanul Haque | Sudip Kumar Naskar | Antal van den Bosch | Andy Way
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 1

pdf bib
Experiments on Domain Adaptation for English–Hindi SMT
Rejwanul Haque | Sudip Kumar Naskar | Josef van Genabith | Andy Way
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 2

pdf bib
Using Supertags as Source Language Context in SMT
Rejwanul Haque | Sudip Kumar Naskar | Yanjun Ma | Andy Way
Proceedings of the 13th Annual Conference of the European Association for Machine Translation

2008

pdf bib
Named Entity Recognition in Bengali: A Conditional Random Field Approach
Asif Ekbal | Rejwanul Haque | Sivaji Bandyopadhyay
Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II

pdf bib
Language Independent Named Entity Recognition in Indian Languages
Asif Ekbal | Rejwanul Haque | Amitava Das | Venkateswarlu Poka | Sivaji Bandyopadhyay
Proceedings of the IJCNLP-08 Workshop on Named Entity Recognition for South and South East Asian Languages

pdf bib
Bengali, Hindi and Telugu to English Ad-hoc Bilingual Task
Sivaji Bandyopadhyay | Tapabrata Mondal | Sudip Kumar Naskar | Asif Ekbal | Rejwanul Haque | Srinivasa Rao Godavarthy
Proceedings of the 2nd workshop on Cross Lingual Information Access (CLIA) Addressing the Information Need of Multilingual Societies