The influence of Large Language Models (LLMs) is rapidly growing, automating more jobs over time. Assessing the fairness of LLMs is crucial due to their expanding impact. Studies reveal the reflection of societal norms and biases in LLMs, which creates a risk of propagating societal stereotypes in downstream tasks. Many studies on bias in LLMs focus on gender bias in various NLP applications. However, there’s a gap in research on bias in emotional attributes, despite the close societal link between emotion and gender. This gap is even larger for low-resource languages like Bangla. Historically, women are associated with emotions like empathy, fear, and guilt, while men are linked to anger, bravado, and authority. This pattern reflects societal norms in Bangla-speaking regions. We offer the first thorough investigation of gendered emotion attribution in Bangla for both closed and open source LLMs in this work. Our aim is to elucidate the intricate societal relationship between gender and emotion specifically within the context of Bangla. We have been successful in showing the existence of gender bias in the context of emotions in Bangla through analytical methods and also show how emotion attribution changes on the basis of gendered role selection in LLMs. All of our resources including code and data are made publicly available to support future research on Bangla NLP. Warning: This paper contains explicit stereotypical statements that many may find offensive.
Pretrained language models inherently exhibit various social biases, prompting a crucial examination of their social impact across various linguistic contexts due to their widespread usage. Previous studies have provided numerous methods for intrinsic bias measurements, predominantly focused on high-resource languages. In this work, we aim to extend these investigations to Bangla, a low-resource language. Specifically, in this study, we (1) create a dataset for intrinsic gender bias measurement in Bangla, (2) discuss necessary adaptations to apply existing bias measurement methods for Bangla, and (3) examine the impact of context length variation on bias measurement, a factor that has been overlooked in previous studies. Through our experiments, we demonstrate a clear dependency of bias metrics on context length, highlighting the need for nuanced considerations in Bangla bias analysis. We consider our work as a stepping stone for bias measurement in the Bangla Language and make all of our resources publicly available to support future research.
We present CrossSum, a large-scale cross-lingual summarization dataset comprising 1.68 million article-summary samples in 1,500+ language pairs. We create CrossSum by aligning parallel articles written in different languages via cross-lingual retrieval from a multilingual abstractive summarization dataset and perform a controlled human evaluation to validate its quality. We propose a multistage data sampling algorithm to effectively train a cross-lingual summarization model capable of summarizing an article in any target language. We also introduce LaSE, an embedding-based metric for automatically evaluating model-generated summaries. LaSE is strongly correlated with ROUGE and, unlike ROUGE, can be reliably measured even in the absence of references in the target language. Performance on ROUGE and LaSE indicate that our proposed model consistently outperforms baseline models. To the best of our knowledge, CrossSum is the largest cross-lingual summarization dataset and the first ever that is not centered around English. We are releasing the dataset, training and evaluation scripts, and models to spur future research on cross-lingual summarization. The resources can be found at https://github.com/csebuetnlp/CrossSum
This work presents ‘BanglaNLG,’ a comprehensive benchmark for evaluating natural language generation (NLG) models in Bangla, a widely spoken yet low-resource language. We aggregate six challenging conditional text generation tasks under the BanglaNLG benchmark, introducing a new dataset on dialogue generation in the process. Furthermore, using a clean corpus of 27.5 GB of Bangla data, we pretrain ‘BanglaT5’, a sequence-to-sequence Transformer language model for Bangla. BanglaT5 achieves state-of-the-art performance in all of these tasks, outperforming several multilingual models by up to 9% absolute gain and 32% relative gain. We are making the new dialogue dataset and the BanglaT5 model publicly available at https://github.com/csebuetnlp/BanglaNLG in the hope of advancing future research on Bangla NLG.
Evaluations in machine learning rarely use the latest metrics, datasets, or human evaluation in favor of remaining compatible with prior work. The compatibility, often facilitated through leaderboards, thus leads to outdated but standardized evaluation practices. We pose that the standardization is taking place in the wrong spot. Evaluation infrastructure should enable researchers to use the latest methods and what should be standardized instead is how to incorporate these new evaluation advances. We introduce GEMv2, the new version of the Generation, Evaluation, and Metrics Benchmark which uses a modular infrastructure for dataset, model, and metric developers to benefit from each other’s work. GEMv2 supports 40 documented datasets in 51 languages, ongoing online evaluation for all datasets, and our interactive tools make it easier to add new datasets to the living benchmark.
In this work, we present BanglaParaphrase, a high-quality synthetic Bangla Paraphrase dataset curated by a novel filtering pipeline. We aim to take a step towards alleviating the low resource status of the Bangla language in the NLP domain through the introduction of BanglaParaphrase, which ensures quality by preserving both semantics and diversity, making it particularly useful to enhance other Bangla datasets. We show a detailed comparative analysis between our dataset and models trained on it with other existing works to establish the viability of our synthetic paraphrase data generation pipeline. We are making the dataset and models publicly available at https://github.com/csebuetnlp/banglaparaphrase to further the state of Bangla NLP.
In this work, we introduce BanglaBERT, a BERT-based Natural Language Understanding (NLU) model pretrained in Bangla, a widely spoken yet low-resource language in the NLP literature. To pretrain BanglaBERT, we collect 27.5 GB of Bangla pretraining data (dubbed ‘Bangla2B+’) by crawling 110 popular Bangla sites. We introduce two downstream task datasets on natural language inference and question answering and benchmark on four diverse NLU tasks covering text classification, sequence labeling, and span prediction. In the process, we bring them under the first-ever Bangla Language Understanding Benchmark (BLUB). BanglaBERT achieves state-of-the-art results outperforming multilingual and monolingual models. We are making the models, datasets, and a leaderboard publicly available at https://github.com/csebuetnlp/banglabert to advance Bangla NLP.
Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.