Discourse Entity (DE) recognition is the task of identifying novel and known entities introduced within a text. While previous work has found that large language models have basic, if imperfect, DE recognition abilities (Schuster and Linzen, 2022), it remains largely unassessed which of the fundamental semantic properties that govern the introduction and subsequent reference to DEs they have knowledge of. We propose the Linguistically-Informed Evaluation for Discourse Entity Recognition (LIEDER) dataset that allows for a detailed examination of language models’ knowledge of four crucial semantic properties: existence, uniqueness, plurality, and novelty. We find evidence that state-of-the-art large language models exhibit sensitivity to all of these properties except novelty, which demonstrates that they have yet to reach human-level language understanding abilities.
Language models are typically evaluated on their success at predicting the distribution of specific words in specific contexts. Yet linguistic knowledge also encodes relationships between contexts, allowing inferences between word distributions. We investigate the degree to which pre-trained transformer-based large language models (LLMs) represent such relationships, focusing on the domain of argument structure. We find that LLMs perform well in generalizing the distribution of a novel noun argument between related contexts that were seen during pre-training (e.g., the active object and passive subject of the verb spray), succeeding by making use of the semantically organized structure of the embedding space for word embeddings. However, LLMs fail at generalizations between related contexts that have not been observed during pre-training, but which instantiate more abstract, but well-attested structural generalizations (e.g., between the active object and passive subject of an arbitrary verb). Instead, in this case, LLMs show a bias to generalize based on linear order. This finding points to a limitation with current models and points to a reason for which their training is data-intensive.1
When acquiring syntax, children consistently choose hierarchical rules over competing non-hierarchical possibilities. Is this preference due to a learning bias for hierarchical structure, or due to more general biases that interact with hierarchical cues in children’s linguistic input? We explore these possibilities by training LSTMs and Transformers - two types of neural networks without a hierarchical bias - on data similar in quantity and content to children’s linguistic input: text from the CHILDES corpus. We then evaluate what these models have learned about English yes/no questions, a phenomenon for which hierarchical structure is crucial. We find that, though they perform well at capturing the surface statistics of child-directed speech (as measured by perplexity), both model types generalize in a way more consistent with an incorrect linear rule than the correct hierarchical rule. These results suggest that human-like generalization from text alone requires stronger biases than the general sequence-processing biases of standard neural network architectures.
Due to the finite nature of any evidence used in learning, systematic generalization is crucially reliant on the presence of inductive bias (Mitchell, 1980). We examine inductive biases in different types of sequence-to-sequence neural network models, including CNNs, LSTMs (with and without attention), and transformers, inspired by Kharitonov and Chaabouni (2021). Crucially, however, we consider a wider range of possible inductive biases than their study did. Investigating preferences for hierarchical generalization compared to other types of generalization, we find that, contrary to their results, transformers display no preference for hierarchical generalization, but instead prefer a counting strategy. We also investigate biases toward different types of compositionality. By controlling for a confound in Kharitonov and Chaabouni (2021)’s test set, we find much less consistent generalization overall, and find that a large number of responses were among types other than the two types of generalization they had considered. Nevertheless, we observe consistent compositional generalization to held out combinations of primitives and functions on a SCAN task (Lake and Baroni, 2017) by models of all types, but only when primitives occur with other functions in the training set. The pattern of success indicates generalization in models of these types is highly sensitive to distributional properties of their training data.
This paper analyzes three formal models of Transformer encoders that differ in the form of their self-attention mechanism: unique hard attention (UHAT); generalized unique hard attention (GUHAT), which generalizes UHAT; and averaging hard attention (AHAT). We show that UHAT and GUHAT Transformers, viewed as string acceptors, can only recognize formal languages in the complexity class AC0, the class of languages recognizable by families of Boolean circuits of constant depth and polynomial size. This upper bound subsumes Hahn’s (2020) results that GUHAT cannot recognize the DYCK languages or the PARITY language, since those languages are outside AC0 (Furst et al., 1984). In contrast, the non-AC0 languages MAJORITY and DYCK-1 are recognizable by AHAT networks, implying that AHAT can recognize languages that UHAT and GUHAT cannot.
Relations between words are governed by hierarchical structure rather than linear ordering. Sequence-to-sequence (seq2seq) models, despite their success in downstream NLP applications, often fail to generalize in a hierarchy-sensitive manner when performing syntactic transformations—for example, transforming declarative sentences into questions. However, syntactic evaluations of seq2seq models have only observed models that were not pre-trained on natural language data before being trained to perform syntactic transformations, in spite of the fact that pre-training has been found to induce hierarchical linguistic generalizations in language models; in other words, the syntactic capabilities of seq2seq models may have been greatly understated. We address this gap using the pre-trained seq2seq models T5 and BART, as well as their multilingual variants mT5 and mBART. We evaluate whether they generalize hierarchically on two transformations in two languages: question formation and passivization in English and German. We find that pre-trained seq2seq models generalize hierarchically when performing syntactic transformations, whereas models trained from scratch on syntactic transformations do not. This result presents evidence for the learnability of hierarchical syntactic information from non-annotated natural language text while also demonstrating that seq2seq models are capable of syntactic generalization, though only after exposure to much more language data than human learners receive.
Learners that are exposed to the same training data might generalize differently due to differing inductive biases. In neural network models, inductive biases could in theory arise from any aspect of the model architecture. We investigate which architectural factors affect the generalization behavior of neural sequence-to-sequence models trained on two syntactic tasks, English question formation and English tense reinflection. For both tasks, the training set is consistent with a generalization based on hierarchical structure and a generalization based on linear order. All architectural factors that we investigated qualitatively affected how models generalized, including factors with no clear connection to hierarchical structure. For example, LSTMs and GRUs displayed qualitatively different inductive biases. However, the only factor that consistently contributed a hierarchical bias across tasks was the use of a tree-structured model rather than a model with sequential recurrence, suggesting that human-like syntactic generalization requires architectural syntactic structure.
Reflexive anaphora present a challenge for semantic interpretation: their meaning varies depending on context in a way that appears to require abstract variables. Past work has raised doubts about the ability of recurrent networks to meet this challenge. In this paper, we explore this question in the context of a fragment of English that incorporates the relevant sort of contextual variability. We consider sequence-to-sequence architectures with recurrent units and show that such networks are capable of learning semantic interpretations for reflexive anaphora which generalize to novel antecedents. We explore the effect of attention mechanisms and different recurrent unit types on the type of training data that is needed for success as measured in two ways: how much lexical support is needed to induce an abstract reflexive meaning (i.e., how many distinct reflexive antecedents must occur during training) and what contexts must a noun phrase occur in to support generalization of reflexive interpretation to this noun phrase?
By positing a relationship between naturalistic reading times and information-theoretic surprisal, surprisal theory (Hale, 2001; Levy, 2008) provides a natural interface between language models and psycholinguistic models. This paper re-evaluates a claim due to Goodkind and Bicknell (2018) that a language model’s ability to model reading times is a linear function of its perplexity. By extending Goodkind and Bicknell’s analysis to modern neural architectures, we show that the proposed relation does not always hold for Long Short-Term Memory networks, Transformers, and pre-trained models. We introduce an alternate measure of language modeling performance called predictability norm correlation based on Cloze probabilities measured from human subjects. Our new metric yields a more robust relationship between language model quality and psycholinguistic modeling performance that allows for comparison between models with different training configurations.
We train a diachronic long short-term memory (LSTM) part-of-speech tagger on a large corpus of American English from the 19th, 20th, and 21st centuries. We analyze the tagger’s ability to implicitly learn temporal structure between years, and the extent to which this knowledge can be transferred to date new sentences. The learned year embeddings show a strong linear correlation between their first principal component and time. We show that temporal information encoded in the model can be used to predict novel sentences’ years of composition relatively well. Comparisons to a feedforward baseline suggest that the temporal change learned by the LSTM is syntactic rather than purely lexical. Thus, our results suggest that our tagger is implicitly learning to model syntactic change in American English over the course of the 19th, 20th, and early 21st centuries.
Neural network architectures have been augmented with differentiable stacks in order to introduce a bias toward learning hierarchy-sensitive regularities. It has, however, proven difficult to assess the degree to which such a bias is effective, as the operation of the differentiable stack is not always interpretable. In this paper, we attempt to detect the presence of latent representations of hierarchical structure through an exploration of the unsupervised learning of constituency structure. Using a technique due to Shen et al. (2018a,b), we extract syntactic trees from the pushing behavior of stack RNNs trained on language modeling and classification objectives. We find that our models produce parses that reflect natural language syntactic constituencies, demonstrating that stack RNNs do indeed infer linguistically relevant hierarchical structure.
How and to what extent does BERT encode syntactically-sensitive hierarchical information or positionally-sensitive linear information? Recent work has shown that contextual representations like BERT perform well on tasks that require sensitivity to linguistic structure. We present here two studies which aim to provide a better understanding of the nature of BERT’s representations. The first of these focuses on the identification of structurally-defined elements using diagnostic classifiers, while the second explores BERT’s representation of subject-verb agreement and anaphor-antecedent dependencies through a quantitative assessment of self-attention vectors. In both cases, we find that BERT encodes positional information about word tokens well on its lower layers, but switches to a hierarchically-oriented encoding on higher layers. We conclude then that BERT’s representations do indeed model linguistically relevant aspects of hierarchical structure, though they do not appear to show the sharp sensitivity to hierarchical structure that is found in human processing of reflexive anaphora.
We introduce a new syntax-aware model for dependency-based semantic role labeling that outperforms syntax-agnostic models for English and Spanish. We use a BiLSTM to tag the text with supertags extracted from dependency parses, and we feed these supertags, along with words and parts of speech, into a deep highway BiLSTM for semantic role labeling. Our model combines the strengths of earlier models that performed SRL on the basis of a full dependency parse with more recent models that use no syntactic information at all. Our local and non-ensemble model achieves state-of-the-art performance on the CoNLL 09 English and Spanish datasets. SRL models benefit from syntactic information, and we show that supertagging is a simple, powerful, and robust way to incorporate syntax into a neural SRL system.
This paper analyzes the behavior of stack-augmented recurrent neural network (RNN) models. Due to the architectural similarity between stack RNNs and pushdown transducers, we train stack RNN models on a number of tasks, including string reversal, context-free language modelling, and cumulative XOR evaluation. Examining the behavior of our networks, we show that stack-augmented RNNs can discover intuitive stack-based strategies for solving our tasks. However, stack RNNs are more difficult to train than classical architectures such as LSTMs. Rather than employ stack-based strategies, more complex networks often find approximate solutions by using the stack as unstructured memory.
We present a graph-based Tree Adjoining Grammar (TAG) parser that uses BiLSTMs, highway connections, and character-level CNNs. Our best end-to-end parser, which jointly performs supertagging, POS tagging, and parsing, outperforms the previously reported best results by more than 2.2 LAS and UAS points. The graph-based parsing architecture allows for global inference and rich feature representations for TAG parsing, alleviating the fundamental trade-off between transition-based and graph-based parsing systems. We also demonstrate that the proposed parser achieves state-of-the-art performance in the downstream tasks of Parsing Evaluation using Textual Entailments (PETE) and Unbounded Dependency Recovery. This provides further support for the claim that TAG is a viable formalism for problems that require rich structural analysis of sentences.