Ronald Cardenas


2023

pdf bib
‘Don’t Get Too Technical with Me’: A Discourse Structure-Based Framework for Automatic Science Journalism
Ronald Cardenas | Bingsheng Yao | Dakuo Wang | Yufang Hou
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Science journalism refers to the task of reporting technical findings of a scientific paper as a less technical news article to the general public audience. We aim to design an automated system to support this real-world task (i.e., automatic science journalism ) by 1) introducing a newly-constructed and real-world dataset (SciTechNews), with tuples of a publicly-available scientific paper, its corresponding news article, and an expert-written short summary snippet; 2) proposing a novel technical framework that integrates a paper’s discourse structure with its metadata to guide generation; and, 3) demonstrating with extensive automatic and human experiments that our model outperforms other baseline methods (e.g. Alpaca and ChatGPT) in elaborating a content plan meaningful for the target audience, simplify the information selected, and produce a coherent final report in a layman’s style.

2022

pdf bib
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Sebastian Gehrmann | Abhik Bhattacharjee | Abinaya Mahendiran | Alex Wang | Alexandros Papangelis | Aman Madaan | Angelina Mcmillan-major | Anna Shvets | Ashish Upadhyay | Bernd Bohnet | Bingsheng Yao | Bryan Wilie | Chandra Bhagavatula | Chaobin You | Craig Thomson | Cristina Garbacea | Dakuo Wang | Daniel Deutsch | Deyi Xiong | Di Jin | Dimitra Gkatzia | Dragomir Radev | Elizabeth Clark | Esin Durmus | Faisal Ladhak | Filip Ginter | Genta Indra Winata | Hendrik Strobelt | Hiroaki Hayashi | Jekaterina Novikova | Jenna Kanerva | Jenny Chim | Jiawei Zhou | Jordan Clive | Joshua Maynez | João Sedoc | Juraj Juraska | Kaustubh Dhole | Khyathi Raghavi Chandu | Laura Perez Beltrachini | Leonardo F . R. Ribeiro | Lewis Tunstall | Li Zhang | Mahim Pushkarna | Mathias Creutz | Michael White | Mihir Sanjay Kale | Moussa Kamal Eddine | Nico Daheim | Nishant Subramani | Ondrej Dusek | Paul Pu Liang | Pawan Sasanka Ammanamanchi | Qi Zhu | Ratish Puduppully | Reno Kriz | Rifat Shahriyar | Ronald Cardenas | Saad Mahamood | Salomey Osei | Samuel Cahyawijaya | Sanja Štajner | Sebastien Montella | Shailza Jolly | Simon Mille | Tahmid Hasan | Tianhao Shen | Tosin Adewumi | Vikas Raunak | Vipul Raheja | Vitaly Nikolaev | Vivian Tsai | Yacine Jernite | Ying Xu | Yisi Sang | Yixin Liu | Yufang Hou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Evaluations in machine learning rarely use the latest metrics, datasets, or human evaluation in favor of remaining compatible with prior work. The compatibility, often facilitated through leaderboards, thus leads to outdated but standardized evaluation practices. We pose that the standardization is taking place in the wrong spot. Evaluation infrastructure should enable researchers to use the latest methods and what should be standardized instead is how to incorporate these new evaluation advances. We introduce GEMv2, the new version of the Generation, Evaluation, and Metrics Benchmark which uses a modular infrastructure for dataset, model, and metric developers to benefit from each other’s work. GEMv2 supports 40 documented datasets in 51 languages, ongoing online evaluation for all datasets, and our interactive tools make it easier to add new datasets to the living benchmark.

2019

pdf bib
CUNIMalta system at SIGMORPHON 2019 Shared Task on Morphological Analysis and Lemmatization in context: Operation-based word formation
Ronald Cardenas | Claudia Borg | Daniel Zeman
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents the submission by the Charles University-University of Malta team to the SIGMORPHON 2019 Shared Task on Morphological Analysis and Lemmatization in context. We present a lemmatization model based on previous work on neural transducers (Makarov and Clematide, 2018b; Aharoni and Goldberg, 2016). The key difference is that our model transforms the whole word form in every step, instead of consuming it character by character. We propose a merging strategy inspired by Byte-Pair-Encoding that reduces the space of valid operations by merging frequent adjacent operations. The resulting operations not only encode the actions to be performed but the relative position in the word token and how characters need to be transformed. Our morphological tagger is a vanilla biLSTM tagger that operates over operation representations, encoding operations and words in a hierarchical manner. Even though relative performance according to metrics is below the baseline, experiments show that our models capture important associations between interpretable operation labels and fine-grained morpho-syntax labels.

pdf bib
A Grounded Unsupervised Universal Part-of-Speech Tagger for Low-Resource Languages
Ronald Cardenas | Ying Lin | Heng Ji | Jonathan May
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Unsupervised part of speech (POS) tagging is often framed as a clustering problem, but practical taggers need to ground their clusters as well. Grounding generally requires reference labeled data, a luxury a low-resource language might not have. In this work, we describe an approach for low-resource unsupervised POS tagging that yields fully grounded output and requires no labeled training data. We find the classic method of Brown et al. (1992) clusters well in our use case and employ a decipherment-based approach to grounding. This approach presumes a sequence of cluster IDs is a ‘ciphertext’ and seeks a POS tag-to-cluster ID mapping that will reveal the POS sequence. We show intrinsically that, despite the difficulty of the task, we obtain reasonable performance across a variety of languages. We also show extrinsically that incorporating our POS tagger into a name tagger leads to state-of-the-art tagging performance in Sinhalese and Kinyarwanda, two languages with nearly no labeled POS data available. We further demonstrate our tagger’s utility by incorporating it into a true ‘zero-resource’ variant of the MALOPA (Ammar et al., 2016) dependency parser model that removes the current reliance on multilingual resources and gold POS tags for new languages. Experiments show that including our tagger makes up much of the accuracy lost when gold POS tags are unavailable.

2018

pdf bib
A Morphological Analyzer for Shipibo-Konibo
Ronald Cardenas | Daniel Zeman
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology

We present a fairly complete morphological analyzer for Shipibo-Konibo, a low-resourced native language spoken in the Amazonian region of Peru. We resort to the robustness of finite-state systems in order to model the complex morphosyntax of the language. Evaluation over raw corpora shows promising coverage of grammatical phenomena, limited only by the scarce lexicon. We make this tool freely available so as to aid the production of annotated corpora and impulse further research in native languages of Peru.

pdf bib
Document Modeling with External Attention for Sentence Extraction
Shashi Narayan | Ronald Cardenas | Nikos Papasarantopoulos | Shay B. Cohen | Mirella Lapata | Jiangsheng Yu | Yi Chang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Document modeling is essential to a variety of natural language understanding tasks. We propose to use external information to improve document modeling for problems that can be framed as sentence extraction. We develop a framework composed of a hierarchical document encoder and an attention-based extractor with attention over external information. We evaluate our model on extractive document summarization (where the external information is image captions and the title of the document) and answer selection (where the external information is a question). We show that our model consistently outperforms strong baselines, in terms of both informativeness and fluency (for CNN document summarization) and achieves state-of-the-art results for answer selection on WikiQA and NewsQA.