Rui Li


2024

pdf bib
Wonder at Chemotimelines 2024: MedTimeline: An End-to-End NLP System for Timeline Extraction from Clinical Narratives
Liwei Wang | Qiuhao Lu | Rui Li | Sunyang Fu | Hongfang Liu
Proceedings of the 6th Clinical Natural Language Processing Workshop

Extracting timeline information from clinical narratives is critical for cancer research and practice using electronic health records (EHRs). In this study, we apply MedTimeline, our end-to-end hybrid NLP system combining large language model, deep learning with knowledge engineering, to the ChemoTimeLine challenge subtasks. Our experiment results in 0.83, 0.90, 0.84, and 0.53, 0.63, 0.39, respectively, for subtask1 and subtask2 in breast, melanoma and ovarian cancer.

pdf bib
RePair: Automated Program Repair with Process-based Feedback
Yuze Zhao | Zhenya Huang | Yixiao Ma | Rui Li | Kai Zhang | Hao Jiang | Qi Liu | Linbo Zhu | Yu Su
Findings of the Association for Computational Linguistics ACL 2024

The gap between the trepidation of program reliability and the expense of repairs underscore the indispensability for Automated Program Repair (APR). APR is instrumental in transforming vulnerable programs into more robust ones, bolstering program reliability while simultaneously diminishing the financial burden of manual repairs. Commercial-scale language models (LM) have taken APR to unprecedented levels. However, due to the limitations of model capabilities by parameters, a one-step substantial modification may not achieve the desired effect for models with parameters less than 100B. Moreover, humans interact with the LLM through explicit prompts, which hinders the LLM from receiving feedback from compiler and test cases to automatically optimize its repair policies. Explicit prompts from humans not only increase additional manpower costs, but also pose potential misunderstandings between human’s intent and LMs.Based on the above considerations, we are exploring how to ensure small-scale LM still outperform through process supervision and feedback. We start by constructing a dataset named CodeNet4Repair, replete with multiple repair records, which supervises the fine-tuning of a foundational mode. Building upon the encouraging outcomes of reinforcement learning, we develop a reward model that serves as a critic, providing feedback for the fine-tuned LM’s action, progressively optimizing its policy. During inference, we require the LM to generate solutions iteratively until the repair effect no longer improves or hits the maximum step limit. The experimental results show that this process-based feedback not only outperforms larger outcome-based generation methods, but also nearly matches the performance of closed-source commercial large-scale LMs.

pdf bib
Breakthrough from Nuance and Inconsistency: Enhancing Multimodal Sarcasm Detection with Context-Aware Self-Attention Fusion and Word Weight Calculation.
Hongfei Xue | Linyan Xu | Yu Tong | Rui Li | Jiali Lin | Dazhi Jiang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multimodal sarcasm detection has received considerable attention due to its unique role in social networks. Existing methods often rely on feature concatenation to fuse different modalities or model the inconsistencies among modalities. However, sarcasm is often embodied in local and momentary nuances in a subtle way, which causes difficulty for sarcasm detection. To effectively incorporate these nuances, this paper presents Context-Aware Self-Attention Fusion (CAAF) to integrate local and momentary multimodal information into specific words. Furthermore, due to the instantaneous nature of sarcasm, the connotative meanings of words post-multimodal integration generally deviate from their denotative meanings. Therefore, Word Weight Calculation (WWC) is presented to compute the weight of specific words based on CAAF’s fusion nuances, illustrating the inconsistency between connotation and denotation. We evaluate our method on the MUStARD dataset, achieving an accuracy of 76.9 and an F1 score of 76.1, which surpasses the current state-of-the-art IWAN model by 1.7 and 1.6 respectively.

pdf bib
Feature Structure Matching for Multi-source Sentiment Analysis with Efficient Adaptive Tuning
Rui Li | Cheng Liu | Yu Tong | Jiang Dazhi
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Recently, fine-tuning the large pre-trained language models on the labeled sentiment dataset achieves appealing performance. However, the obtained model may not generalize well to the other domains due to the domain shift, and it is expensive to update the entire parameters within the large models. Although some existing domain matching methods are proposed to alleviate the above issues, there are multiple relevant source domains in practice which makes the whole training more costly and complicated. To this end, we focus on the efficient unsupervised multi-source sentiment adaptation task which is more challenging and beneficial for real-world applications. Specifically, we propose to extract multi-layer features from the large pre-trained model, and design a dynamic parameters fusion module to exploit these features for both efficient and adaptive tuning. Furthermore, we propose a novel feature structure matching constraint, which enforces similar feature-wise correlations across different domains. Compared with the traditional domain matching methods which tend to pull all feature instances close, we show that the proposed feature structure matching is more robust and generalizable in the multi-source scenario. Extensive experiments on several multi-source sentiment analysis benchmarks demonstrate the effectiveness and superiority of our proposed framework.

2023

pdf bib
Learning More from Mixed Emotions: A Label Refinement Method for Emotion Recognition in Conversations
Jintao Wen | Geng Tu | Rui Li | Dazhi Jiang | Wenhua Zhu
Transactions of the Association for Computational Linguistics, Volume 11

One-hot labels are commonly employed as ground truth in Emotion Recognition in Conversations (ERC). However, this approach may not fully encompass all the emotions conveyed in a single utterance, leading to suboptimal performance. Regrettably, current ERC datasets lack comprehensive emotionally distributed labels. To address this issue, we propose the Emotion Label Refinement (EmoLR) method, which utilizes context- and speaker-sensitive information to infer mixed emotional labels. EmoLR comprises an Emotion Predictor (EP) module and a Label Refinement (LR) module. The EP module recognizes emotions and provides context/speaker states for the LR module. Subsequently, the LR module calculates the similarity between these states and ground-truth labels, generating a refined label distribution (RLD). The RLD captures a more comprehensive range of emotions than the original one-hot labels. These refined labels are then used for model training in place of the one-hot labels. Experimental results on three public conversational datasets demonstrate that our EmoLR achieves state-of-the-art performance.

pdf bib
To Copy Rather Than Memorize: A Vertical Learning Paradigm for Knowledge Graph Completion
Rui Li | Xu Chen | Chaozhuo Li | Yanming Shen | Jianan Zhao | Yujing Wang | Weihao Han | Hao Sun | Weiwei Deng | Qi Zhang | Xing Xie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Embedding models have shown great power in knowledge graph completion (KGC) task. By learning structural constraints for each training triple, these methods implicitly memorize intrinsic relation rules to infer missing links. However, this paper points out that the multi-hop relation rules are hard to be reliably memorized due to the inherent deficiencies of such implicit memorization strategy, making embedding models underperform in predicting links between distant entity pairs. To alleviate this problem, we present Vertical Learning Paradigm (VLP), which extends embedding models by allowing to explicitly copy target information from related factual triples for more accurate prediction. Rather than solely relying on the implicit memory, VLP directly provides additional cues to improve the generalization ability of embedding models, especially making the distant link prediction significantly easier. Moreover, we also propose a novel relative distance based negative sampling technique (ReD) for more effective optimization. Experiments demonstrate the validity and generality of our proposals on two standard benchmarks. Our code is available at https://github.com/rui9812/VLP.

2022

pdf bib
Asymmetric Mutual Learning for Multi-source Unsupervised Sentiment Adaptation with Dynamic Feature Network
Rui Li | Cheng Liu | Dazhi Jiang
Proceedings of the 29th International Conference on Computational Linguistics

Recently, fine-tuning the pre-trained language model (PrLM) on labeled sentiment datasets demonstrates impressive performance. However, collecting labeled sentiment dataset is time-consuming, and fine-tuning the whole PrLM brings about much computation cost. To this end, we focus on multi-source unsupervised sentiment adaptation problem with the pre-trained features, which is more practical and challenging. We first design a dynamic feature network to fully exploit the extracted pre-trained features for efficient domain adaptation. Meanwhile, with the difference of the traditional source-target domain alignment methods, we propose a novel asymmetric mutual learning strategy, which can robustly estimate the pseudo-labels of the target domain with the knowledge from all the other source models. Experiments on multiple sentiment benchmarks show that our method outperforms the recent state-of-the-art approaches, and we also conduct extensive ablation studies to verify the effectiveness of each the proposed module.

2021

pdf bib
Treasures Outside Contexts: Improving Event Detection via Global Statistics
Rui Li | Wenlin Zhao | Cheng Yang | Sen Su
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Event detection (ED) aims at identifying event instances of specified types in given texts, which has been formalized as a sequence labeling task. As far as we know, existing neural-based ED models make decisions relying entirely on the contextual semantic features of each word in the inputted text, which we find is easy to be confused by the varied contexts in the test stage. To this end, we come up with the idea of introducing a set of statistical features from word-event co-occurrence frequencies in the entire training set to cooperate with contextual features. Specifically, we propose a Semantic and Statistic-Joint Discriminative Network (SS-JDN) consisting of a semantic feature extractor, a statistical feature extractor, and a joint event discriminator. In experiments, SS-JDN effectively exceeds ten recent strong baselines on ACE2005 and KBP2015 datasets. Further, we perform extensive experiments to comprehensively probe SS-JDN.

2016

pdf bib
Multi-Granularity Chinese Word Embedding
Rongchao Yin | Quan Wang | Peng Li | Rui Li | Bin Wang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2012

pdf bib
Annotation Schemes to Encode Domain Knowledge in Medical Narratives
Wilson McCoy | Cecilia Ovesdotter Alm | Cara Calvelli | Rui Li | Jeff B. Pelz | Pengcheng Shi | Anne Haake
Proceedings of the Sixth Linguistic Annotation Workshop