Saranya Venkatraman


2024

pdf bib
Catch Me If You GPT: Tutorial on Deepfake Texts
Adaku Uchendu | Saranya Venkatraman | Thai Le | Dongwon Lee
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts)

In recent years, Natural Language Generation (NLG) techniques have greatly advanced, especially in the realm of Large Language Models (LLMs). With respect to the quality of generated texts, it is no longer trivial to tell the difference between human-written and LLMgenerated texts (i.e., deepfake texts). While this is a celebratory feat for NLG, it poses new security risks (e.g., the generation of misinformation). To combat this novel challenge, researchers have developed diverse techniques to detect deepfake texts. While this niche field of deepfake text detection is growing, the field of NLG is growing at a much faster rate, thus making it difficult to understand the complex interplay between state-of-the-art NLG methods and the detectability of their generated texts. To understand such inter-play, two new computational problems emerge: (1) Deepfake Text Attribution (DTA) and (2) Deepfake Text Obfuscation (DTO) problems, where the DTA problem is concerned with attributing the authorship of a given text to one of k NLG methods, while the DTO problem is to evade the authorship of a given text by modifying parts of the text. In this cutting-edge tutorial, therefore, we call attention to the serious security risk both emerging problems pose and give a comprehensive review of recent literature on the detection and obfuscation of deepfake text authorships. Our tutorial will be 3 hours long with a mix of lecture and hands-on examples for interactive audience participation. You can find our tutorial materials here: https://tinyurl.com/naacl24-tutorial.

pdf bib
GPT-who: An Information Density-based Machine-Generated Text Detector
Saranya Venkatraman | Adaku Uchendu | Dongwon Lee
Findings of the Association for Computational Linguistics: NAACL 2024

The Uniform Information Density (UID) principle posits that humans prefer to spread information evenly during language production. We examine if this UID principle can help capture differences between Large Language Models (LLMs)-generated and human-generated texts. We propose GPT-who, the first psycholinguistically-inspired domain-agnostic statistical detector. This detector employs UID-based featuresto model the unique statistical signature of each LLM and human author for accurate detection. We evaluate our method using 4 large-scale benchmark datasets and find that GPT-who outperforms state-of-the-art detectors (both statistical- & non-statistical) such as GLTR, GPTZero, DetectGPT, OpenAI detector, and ZeroGPT by over 20% across domains.In addition to better performance, it is computationally inexpensive and utilizes an interpretable representation of text articles. We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible.UID-based measures for all datasets and code are available at https://github.com/saranya-venkatraman/gpt-who.

pdf bib
A Ship of Theseus: Curious Cases of Paraphrasing in LLM-Generated Texts
Nafis Irtiza Tripto | Saranya Venkatraman | Dominik Macko | Robert Moro | Ivan Srba | Adaku Uchendu | Thai Le | Dongwon Lee
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the realm of text manipulation and linguistic transformation, the question of authorship has been a subject of fascination and philosophical inquiry. Much like the Ship of Theseus paradox, which ponders whether a ship remains the same when each of its original planks is replaced, our research delves into an intriguing question: Does a text retain its original authorship when it undergoes numerous paraphrasing iterations? Specifically, since Large Language Models (LLMs) have demonstrated remarkable proficiency in both the generation of original content and the modification of human-authored texts, a pivotal question emerges concerning the determination of authorship in instances where LLMs or similar paraphrasing tools are employed to rephrase the text–i.e., whether authorship should be attributed to the original human author or the AI-powered tool. Therefore, we embark on a philosophical voyage through the seas of language and authorship to unravel this intricate puzzle. Using a computational approach, we discover that the diminishing performance in text classification models, with each successive paraphrasing iteration, is closely associated with the extent of deviation from the original author’s style, thus provoking a reconsideration of the current notion of authorship.

2023

pdf bib
How do decoding algorithms distribute information in dialogue responses?
Saranya Venkatraman | He He | David Reitter
Findings of the Association for Computational Linguistics: EACL 2023

Humans tend to follow the Uniform Information Density (UID) principle by distributing information evenly in utterances. We study if decoding algorithms implicitly follow this UID principle, and under what conditions adherence to UID might be desirable for dialogue generation. We generate responses using different decoding algorithms with GPT-2 on the Persona-Chat dataset and collect human judgments on their quality using Amazon Mechanical Turk. We find that (i) surprisingly, model-generated responses follow the UID principle to a greater extent than human responses, and (ii) decoding algorithms that promote UID do not generate higher-quality responses. Instead, when we control for surprisal, non-uniformity of information density correlates with the quality of responses with very low/high surprisal. Our findings indicate that encouraging non-uniform responses is a potential solution to the “likelihood trap” problem (quality degradation in very high-likelihood text). Our dataset containing multiple candidate responses per dialog history along with human-annotated quality ratings is available at: https://huggingface.co/datasets/saranya132/dialog_uid_gpt2.

pdf bib
The Sentiment Problem: A Critical Survey towards Deconstructing Sentiment Analysis
Pranav Venkit | Mukund Srinath | Sanjana Gautam | Saranya Venkatraman | Vipul Gupta | Rebecca Passonneau | Shomir Wilson
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We conduct an inquiry into the sociotechnical aspects of sentiment analysis (SA) by critically examining 189 peer-reviewed papers on their applications, models, and datasets. Our investigation stems from the recognition that SA has become an integral component of diverse sociotechnical systems, exerting influence on both social and technical users. By delving into sociological and technological literature on sentiment, we unveil distinct conceptualizations of this term in domains such as finance, government, and medicine. Our study exposes a lack of explicit definitions and frameworks for characterizing sentiment, resulting in potential challenges and biases. To tackle this issue, we propose an ethics sheet encompassing critical inquiries to guide practitioners in ensuring equitable utilization of SA. Our findings underscore the significance of adopting an interdisciplinary approach to defining sentiment in SA and offer a pragmatic solution for its implementation.