Saurav Manchanda


2024

pdf bib
Fooling the Textual Fooler via Randomizing Latent Representations
Duy Hoang | Nguyen Hung-Quang | Saurav Manchanda | Minlong Peng | Kok-Seng Wong | Khoa Doan
Findings of the Association for Computational Linguistics ACL 2024

Despite outstanding performance in a variety of Natural Language Processing (NLP) tasks, recent studies have revealed that NLP models are vulnerable to adversarial attacks that slightly perturb the input to cause the models to misbehave. Several attacks can even compromise the model without requiring access to the model architecture or model parameters (i.e., a blackbox setting), and thus are detrimental to existing NLP applications. To perform these attacks, the adversary queries the victim model many times to determine the most important parts in an input text and transform. In this work, we propose a lightweight and attack-agnostic defense whose main goal is to perplex the process of generating an adversarial example in these query-based black-box attacks; that is to fool the textual fooler. This defense, named AdvFooler, works by randomizing the latent representation of the input at inference time. Different from existing defenses, AdvFooler does not necessitate additional computational overhead during training nor does it rely on assumptions about the potential adversarial perturbation set while having a negligible impact on the model’s accuracy. Our theoretical and empirical analyses highlight the significance of robustness resulting from confusing the adversary via randomizing the latent space, as well as the impact of randomization on clean accuracy. Finally, we empirically demonstrate near state-of-the-art robustness of AdvFooler against representative adversarial attacks on two benchmark datasets.

2021

pdf bib
Evaluating Scholarly Impact: Towards Content-Aware Bibliometrics
Saurav Manchanda | George Karypis
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Quantitatively measuring the impact-related aspects of scientific, engineering, and technological (SET) innovations is a fundamental problem with broad applications. Traditional citation-based measures for assessing the impact of innovations and related entities do not take into account the content of the publications. This limits their ability to provide rigorous quality-related metrics because they cannot account for the reasons that led to a citation. We present approaches to estimate content-aware bibliometrics to quantitatively measure the scholarly impact of a publication. Our approaches assess the impact of a cited publication by the extent to which the cited publication informs the citing publication. We introduce a new metric, called “Content Informed Index” (CII), that uses the content of the paper as a source of distant-supervision, to quantify how much the cited-node informs the citing-node. We evaluate the weights estimated by our approach on three manually annotated datasets, where the annotations quantify the extent of information in the citation. Particularly, we evaluate how well the ranking imposed by our approach associates with the ranking imposed by the manual annotations. CII achieves up to 103% improvement in performance as compared to the second-best performing approach.