Shaden Shaar


2024

pdf bib
Pungene at DialAM-2024: Identification of Propositional and Illocutionary Relations
Sirawut Chaixanien | Eugene Choi | Shaden Shaar | Claire Cardie
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)

In this paper we tackle the shared task DialAM-2024 aiming to annotate dialogue based on the inference anchoring theory (IAT). The task can be split into two parts, identification of propositional relations and identification of illocutionary relations. We propose a pipelined system made up of three parts: (1) locutionary-propositions relation detection, (2) propositional relations detection, and (3) illocutionary relations identification. We fine-tune models independently for each step, and combine at the end for the final system. Our proposed system ranks second overall compared to other participants in the shared task, scoring an average f1-score on both sub-parts of 63.7.

2022

pdf bib
A Survey on Multimodal Disinformation Detection
Firoj Alam | Stefano Cresci | Tanmoy Chakraborty | Fabrizio Silvestri | Dimiter Dimitrov | Giovanni Da San Martino | Shaden Shaar | Hamed Firooz | Preslav Nakov
Proceedings of the 29th International Conference on Computational Linguistics

Recent years have witnessed the proliferation of offensive content online such as fake news, propaganda, misinformation, and disinformation. While initially this was mostly about textual content, over time images and videos gained popularity, as they are much easier to consume, attract more attention, and spread further than text. As a result, researchers started leveraging different modalities and combinations thereof to tackle online multimodal offensive content. In this study, we offer a survey on the state-of-the-art on multimodal disinformation detection covering various combinations of modalities: text, images, speech, video, social media network structure, and temporal information. Moreover, while some studies focused on factuality, others investigated how harmful the content is. While these two components in the definition of disinformation – (i) factuality, and (ii) harmfulness –, are equally important, they are typically studied in isolation. Thus, we argue for the need to tackle disinformation detection by taking into account multiple modalities as well as both factuality and harmfulness, in the same framework. Finally, we discuss current challenges and future research directions.

pdf bib
Cross-lingual Emotion Detection
Sabit Hassan | Shaden Shaar | Kareem Darwish
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Emotion detection can provide us with a window into understanding human behavior. Due to the complex dynamics of human emotions, however, constructing annotated datasets to train automated models can be expensive. Thus, we explore the efficacy of cross-lingual approaches that would use data from a source language to build models for emotion detection in a target language. We compare three approaches, namely: i) using inherently multilingual models; ii) translating training data into the target language; and iii) using an automatically tagged parallel corpus. In our study, we consider English as the source language with Arabic and Spanish as target languages. We study the effectiveness of different classification models such as BERT and SVMs trained with different features. Our BERT-based monolingual models that are trained on target language data surpass state-of-the-art (SOTA) by 4% and 5% absolute Jaccard score for Arabic and Spanish respectively. Next, we show that using cross-lingual approaches with English data alone, we can achieve more than 90% and 80% relative effectiveness of the Arabic and Spanish BERT models respectively. Lastly, we use LIME to analyze the challenges of training cross-lingual models for different language pairs.

pdf bib
The Role of Context in Detecting Previously Fact-Checked Claims
Shaden Shaar | Firoj Alam | Giovanni Da San Martino | Preslav Nakov
Findings of the Association for Computational Linguistics: NAACL 2022

Recent years have seen the proliferation of disinformation and fake news online. Traditional approaches to mitigate these issues is to use manual or automatic fact-checking. Recently, another approach has emerged: checking whether the input claim has previously been fact-checked, which can be done automatically, and thus fast, while also offering credibility and explainability, thanks to the human fact-checking and explanations in the associated fact-checking article. Here, we focus on claims made in a political debate and we study the impact of modeling the context of the claim: both on the source side, i.e., in the debate, as well as on the target side, i.e., in the fact-checking explanation document. We do this by modeling the local context, the global context, as well as by means of co-reference resolution, and multi-hop reasoning over the sentences of the document describing the fact-checked claim. The experimental results show that each of these represents a valuable information source, but that modeling the source-side context is most important, and can yield 10+ points of absolute improvement over a state-of-the-art model.

pdf bib
Assisting the Human Fact-Checkers: Detecting All Previously Fact-Checked Claims in a Document
Shaden Shaar | Nikola Georgiev | Firoj Alam | Giovanni Da San Martino | Aisha Mohamed | Preslav Nakov
Findings of the Association for Computational Linguistics: EMNLP 2022

Given the recent proliferation of false claims online, there has been a lot of manual fact-checking effort. As this is very time-consuming, human fact-checkers can benefit from tools that can support them and make them more efficient. Here, we focus on building a system that could provide such support. Given an input document, it aims to detect all sentences that contain a claim that can be verified by some previously fact-checked claims (from a given database). The output is a re-ranked list of the document sentences, so that those that can be verified are ranked as high as possible, together with corresponding evidence. Unlike previous work, which has looked into claim retrieval, here we take a document-level perspective. We create a new manually annotated dataset for the task, and we propose suitable evaluation measures. We further experiment with a learning-to-rank approach, achieving sizable performance gains over several strong baselines. Our analysis demonstrates the importance of modeling text similarity and stance, while also taking into account the veracity of the retrieved previously fact-checked claims. We believe that this research would be of interest to fact-checkers, journalists, media, and regulatory authorities.

2021

pdf bib
Detecting Propaganda Techniques in Memes
Dimitar Dimitrov | Bishr Bin Ali | Shaden Shaar | Firoj Alam | Fabrizio Silvestri | Hamed Firooz | Preslav Nakov | Giovanni Da San Martino
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Propaganda can be defined as a form of communication that aims to influence the opinions or the actions of people towards a specific goal; this is achieved by means of well-defined rhetorical and psychological devices. Propaganda, in the form we know it today, can be dated back to the beginning of the 17th century. However, it is with the advent of the Internet and the social media that propaganda has started to spread on a much larger scale than before, thus becoming major societal and political issue. Nowadays, a large fraction of propaganda in social media is multimodal, mixing textual with visual content. With this in mind, here we propose a new multi-label multimodal task: detecting the type of propaganda techniques used in memes. We further create and release a new corpus of 950 memes, carefully annotated with 22 propaganda techniques, which can appear in the text, in the image, or in both. Our analysis of the corpus shows that understanding both modalities together is essential for detecting these techniques. This is further confirmed in our experiments with several state-of-the-art multimodal models.

pdf bib
SemEval-2021 Task 6: Detection of Persuasion Techniques in Texts and Images
Dimitar Dimitrov | Bishr Bin Ali | Shaden Shaar | Firoj Alam | Fabrizio Silvestri | Hamed Firooz | Preslav Nakov | Giovanni Da San Martino
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

We describe SemEval-2021 task 6 on Detection of Persuasion Techniques in Texts and Images: the data, the annotation guidelines, the evaluation setup, the results, and the participating systems. The task focused on memes and had three subtasks: (i) detecting the techniques in the text, (ii) detecting the text spans where the techniques are used, and (iii) detecting techniques in the entire meme, i.e., both in the text and in the image. It was a popular task, attracting 71 registrations, and 22 teams that eventually made an official submission on the test set. The evaluation results for the third subtask confirmed the importance of both modalities, the text and the image. Moreover, some teams reported benefits when not just combining the two modalities, e.g., by using early or late fusion, but rather modeling the interaction between them in a joint model.

pdf bib
Findings of the NLP4IF-2021 Shared Tasks on Fighting the COVID-19 Infodemic and Censorship Detection
Shaden Shaar | Firoj Alam | Giovanni Da San Martino | Alex Nikolov | Wajdi Zaghouani | Preslav Nakov | Anna Feldman
Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

We present the results and the main findings of the NLP4IF-2021 shared tasks. Task 1 focused on fighting the COVID-19 infodemic in social media, and it was offered in Arabic, Bulgarian, and English. Given a tweet, it asked to predict whether that tweet contains a verifiable claim, and if so, whether it is likely to be false, is of general interest, is likely to be harmful, and is worthy of manual fact-checking; also, whether it is harmful to society, and whether it requires the attention of policy makers. Task 2 focused on censorship detection, and was offered in Chinese. A total of ten teams submitted systems for task 1, and one team participated in task 2; nine teams also submitted a system description paper. Here, we present the tasks, analyze the results, and discuss the system submissions and the methods they used. Most submissions achieved sizable improvements over several baselines, and the best systems used pre-trained Transformers and ensembles. The data, the scorers and the leaderboards for the tasks are available at http://gitlab.com/NLP4IF/nlp4if-2021.

pdf bib
Fighting the COVID-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society
Firoj Alam | Shaden Shaar | Fahim Dalvi | Hassan Sajjad | Alex Nikolov | Hamdy Mubarak | Giovanni Da San Martino | Ahmed Abdelali | Nadir Durrani | Kareem Darwish | Abdulaziz Al-Homaid | Wajdi Zaghouani | Tommaso Caselli | Gijs Danoe | Friso Stolk | Britt Bruntink | Preslav Nakov
Findings of the Association for Computational Linguistics: EMNLP 2021

With the emergence of the COVID-19 pandemic, the political and the medical aspects of disinformation merged as the problem got elevated to a whole new level to become the first global infodemic. Fighting this infodemic has been declared one of the most important focus areas of the World Health Organization, with dangers ranging from promoting fake cures, rumors, and conspiracy theories to spreading xenophobia and panic. Addressing the issue requires solving a number of challenging problems such as identifying messages containing claims, determining their check-worthiness and factuality, and their potential to do harm as well as the nature of that harm, to mention just a few. To address this gap, we release a large dataset of 16K manually annotated tweets for fine-grained disinformation analysis that (i) focuses on COVID-19, (ii) combines the perspectives and the interests of journalists, fact-checkers, social media platforms, policy makers, and society, and (iii) covers Arabic, Bulgarian, Dutch, and English. Finally, we show strong evaluation results using pretrained Transformers, thus confirming the practical utility of the dataset in monolingual vs. multilingual, and single task vs. multitask settings.

pdf bib
COVID-19 in Bulgarian Social Media: Factuality, Harmfulness, Propaganda, and Framing
Preslav Nakov | Firoj Alam | Shaden Shaar | Giovanni Da San Martino | Yifan Zhang
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

With the emergence of the COVID-19 pandemic, the political and the medical aspects of disinformation merged as the problem got elevated to a whole new level to become the first global infodemic. Fighting this infodemic is currently ranked very high on the list of priorities of the World Health Organization, with dangers ranging from promoting fake cures, rumors, and conspiracy theories to spreading xenophobia and panic. With this in mind, we studied how COVID-19 is discussed in Bulgarian social media in terms of factuality, harmfulness, propaganda, and framing. We found that most Bulgarian tweets contain verifiable factual claims, are factually true, are of potential public interest, are not harmful, and are too trivial to fact-check; moreover, zooming into harmful tweets, we found that they spread not only rumors but also panic. We further analyzed articles shared in Bulgarian partisan pro/con-COVID-19 Facebook groups and found that propaganda is more prevalent in skeptical articles, which use doubt, flag waving, and slogans to convey their message; in contrast, concerned ones appeal to emotions, fear, and authority; moreover, skeptical articles frame the issue as one of quality of life, policy, legality, economy, and politics, while concerned articles focus on health & safety. We release our manually and automatically analyzed datasets to enable further research.

pdf bib
A Second Pandemic? Analysis of Fake News about COVID-19 Vaccines in Qatar
Preslav Nakov | Firoj Alam | Shaden Shaar | Giovanni Da San Martino | Yifan Zhang
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

While COVID-19 vaccines are finally becoming widely available, a second pandemic that revolves around the circulation of anti-vaxxer “fake news” may hinder efforts to recover from the first one. With this in mind, we performed an extensive analysis of Arabic and English tweets about COVID-19 vaccines, with focus on messages originating from Qatar. We found that Arabic tweets contain a lot of false information and rumors, while English tweets are mostly factual. However, English tweets are much more propagandistic than Arabic ones. In terms of propaganda techniques, about half of the Arabic tweets express doubt, and 1/5 use loaded language, while English tweets are abundant in loaded language, exaggeration, fear, name-calling, doubt, and flag-waving. Finally, in terms of framing, Arabic tweets adopt a health and safety perspective, while in English economic concerns dominate.

2020

pdf bib
That is a Known Lie: Detecting Previously Fact-Checked Claims
Shaden Shaar | Nikolay Babulkov | Giovanni Da San Martino | Preslav Nakov
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The recent proliferation of ”fake news” has triggered a number of responses, most notably the emergence of several manual fact-checking initiatives. As a result and over time, a large number of fact-checked claims have been accumulated, which increases the likelihood that a new claim in social media or a new statement by a politician might have already been fact-checked by some trusted fact-checking organization, as viral claims often come back after a while in social media, and politicians like to repeat their favorite statements, true or false, over and over again. As manual fact-checking is very time-consuming (and fully automatic fact-checking has credibility issues), it is important to try to save this effort and to avoid wasting time on claims that have already been fact-checked. Interestingly, despite the importance of the task, it has been largely ignored by the research community so far. Here, we aim to bridge this gap. In particular, we formulate the task and we discuss how it relates to, but also differs from, previous work. We further create a specialized dataset, which we release to the research community. Finally, we present learning-to-rank experiments that demonstrate sizable improvements over state-of-the-art retrieval and textual similarity approaches.

pdf bib
Prta: A System to Support the Analysis of Propaganda Techniques in the News
Giovanni Da San Martino | Shaden Shaar | Yifan Zhang | Seunghak Yu | Alberto Barrón-Cedeño | Preslav Nakov
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Recent events, such as the 2016 US Presidential Campaign, Brexit and the COVID-19 “infodemic”, have brought into the spotlight the dangers of online disinformation. There has been a lot of research focusing on fact-checking and disinformation detection. However, little attention has been paid to the specific rhetorical and psychological techniques used to convey propaganda messages. Revealing the use of such techniques can help promote media literacy and critical thinking, and eventually contribute to limiting the impact of “fake news” and disinformation campaigns. Prta (Propaganda Persuasion Techniques Analyzer) allows users to explore the articles crawled on a regular basis by highlighting the spans in which propaganda techniques occur and to compare them on the basis of their use of propaganda techniques. The system further reports statistics about the use of such techniques, overall and over time, or according to filtering criteria specified by the user based on time interval, keywords, and/or political orientation of the media. Moreover, it allows users to analyze any text or URL through a dedicated interface or via an API. The system is available online: https://www.tanbih.org/prta.