Shaily Bhatt


2023

pdf bib
Proceedings of the Seventh Widening NLP Workshop (WiNLP 2023)
Bonaventure F. P. Dossou | Isidora Tourni | Hatem Haddad | Shaily Bhatt | Fatemehsadat Mireshghallah | Sunipa Dev | Tanvi Anand | Weijia Xu | Atnafu Lambebo Tonja | Alfredo Gomez | Chanjun Park
Proceedings of the Seventh Widening NLP Workshop (WiNLP 2023)

2022

pdf bib
Multilingual CheckList: Generation and Evaluation
Karthikeyan K | Shaily Bhatt | Pankaj Singh | Somak Aditya | Sandipan Dandapat | Sunayana Sitaram | Monojit Choudhury
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

Multilingual evaluation benchmarks usually contain limited high-resource languages and do not test models for specific linguistic capabilities. CheckList is a template-based evaluation approach that tests models for specific capabilities. The CheckList template creation process requires native speakers, posing a challenge in scaling to hundreds of languages. In this work, we explore multiple approaches to generate Multilingual CheckLists. We device an algorithm –Template Extraction Algorithm (TEA) for automatically extracting target language CheckList templates from machine translated instances of a source language templates. We compare the TEA CheckLists with CheckLists created with different levels of human intervention. We further introduce metrics along the dimensions of cost, diversity, utility, and correctness to compare the CheckLists. We thoroughly analyze different approaches to creating CheckLists in Hindi. Furthermore, we experiment with 9 more different languages. We find that TEA followed by human verification is ideal for scaling Checklist-based evaluation to multiple languages while TEA gives a good estimates of model performance. We release the code of TEA and the CheckLists created at aka.ms/multilingualchecklist

pdf bib
Proceedings of the Sixth Widening NLP Workshop (WiNLP)
Shaily Bhatt | Sunipa Dev | Bonaventure Dossou | Tirthankar Ghosal | Hatem Haddad | Haley M. Lepp | Fatemehsadat Mireshghallah | Surangika Ranathunga | Xanda Schofield | Isidora Tourni | Weijia Xu
Proceedings of the Sixth Widening NLP Workshop (WiNLP)

pdf bib
Re-contextualizing Fairness in NLP: The Case of India
Shaily Bhatt | Sunipa Dev | Partha Talukdar | Shachi Dave | Vinodkumar Prabhakaran
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent research has revealed undesirable biases in NLP data and models. However, these efforts focus of social disparities in West, and are not directly portable to other geo-cultural contexts. In this paper, we focus on NLP fairness in the context of India. We start with a brief account of the prominent axes of social disparities in India. We build resources for fairness evaluation in the Indian context and use them to demonstrate prediction biases along some of the axes. We then delve deeper into social stereotypes for Region and Religion, demonstrating its prevalence in corpora and models. Finally, we outline a holistic research agenda to re-contextualize NLP fairness research for the Indian context, accounting for Indian societal context, bridging technological gaps in NLP capabilities and resources, and adapting to Indian cultural values. While we focus on India, this framework can be generalized to other geo-cultural contexts.

2021

pdf bib
On the Universality of Deep Contextual Language Models
Shaily Bhatt | Poonam Goyal | Sandipan Dandapat | Monojit Choudhury | Sunayana Sitaram
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

Deep Contextual Language Models (LMs) like ELMO, BERT, and their successors dominate the landscape of Natural Language Processing due to their ability to scale across multiple tasks rapidly by pre-training a single model, followed by task-specific fine-tuning. Furthermore, multilingual versions of such models like XLM-R and mBERT have given promising results in zero-shot cross-lingual transfer, potentially enabling NLP applications in many under-served and under-resourced languages. Due to this initial success, pre-trained models are being used as ‘Universal Language Models’ as the starting point across diverse tasks, domains, and languages. This work explores the notion of ‘Universality’ by identifying seven dimensions across which a universal model should be able to scale, that is, perform equally well or reasonably well, to be useful across diverse settings. We outline the current theoretical and empirical results that support model performance across these dimensions, along with extensions that may help address some of their current limitations. Through this survey, we lay the foundation for understanding the capabilities and limitations of massive contextual language models and help discern research gaps and directions for future work to make these LMs inclusive and fair to diverse applications, users, and linguistic phenomena.

pdf bib
A Case Study of Efficacy and Challenges in Practical Human-in-Loop Evaluation of NLP Systems Using Checklist
Shaily Bhatt | Rahul Jain | Sandipan Dandapat | Sunayana Sitaram
Proceedings of the Workshop on Human Evaluation of NLP Systems (HumEval)

Despite state-of-the-art performance, NLP systems can be fragile in real-world situations. This is often due to insufficient understanding of the capabilities and limitations of models and the heavy reliance on standard evaluation benchmarks. Research into non-standard evaluation to mitigate this brittleness is gaining increasing attention. Notably, the behavioral testing principle ‘Checklist’, which decouples testing from implementation revealed significant failures in state-of-the-art models for multiple tasks. In this paper, we present a case study of using Checklist in a practical scenario. We conduct experiments for evaluating an offensive content detection system and use a data augmentation technique for improving the model using insights from Checklist. We lay out the challenges and open questions based on our observations of using Checklist for human-in-loop evaluation and improvement of NLP systems. Disclaimer: The paper contains examples of content with offensive language. The examples do not represent the views of the authors or their employers towards any person(s), group(s), practice(s), or entity/entities.