Shashank Sonkar


2023

pdf bib
CLASS: A Design Framework for Building Intelligent Tutoring Systems Based on Learning Science principles
Shashank Sonkar | Naiming Liu | Debshila Mallick | Richard Baraniuk
Findings of the Association for Computational Linguistics: EMNLP 2023

We present a design framework called Conversational Learning with Analytical Step-by-Step Strategies (CLASS) for building advanced Intelligent Tutoring Systems (ITS) powered by high-performance Large Language Models (LLMs). The CLASS framework empowers ITS with two key capabilities. First, through a carefully curated scaffolding dataset, CLASS equips ITS with essential problem-solving strategies, enabling it to provide tutor-like, step-by-step guidance to students. Second, by using a dynamic conversational dataset, CLASS assists ITS in facilitating natural language interactions, fostering engaging student-tutor conversations. The CLASS framework also provides valuable insights into ITS’s internal decision-making process which allows seamless integration of user feedback, thus enabling continuous refinement and improvement. We also present a proof-of-concept ITS, referred to as SPOCK, which is trained using the CLASS framework with a focus on introductory college level biology content. A carefully constructed protocol was developed for SPOCK’s preliminary evaluation, examining aspects such as the factual accuracy and relevance of its responses. Experts in the field of biology offered favorable remarks, particularly highlighting SPOCK’s capability to break down questions into manageable subproblems and provide encouraging responses to students.

pdf bib
MANER: Mask Augmented Named Entity Recognition for Extreme Low-Resource Languages
Shashank Sonkar | Zichao Wang | Richard Baraniuk
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)

2020

pdf bib
Attention Word Embedding
Shashank Sonkar | Andrew Waters | Richard Baraniuk
Proceedings of the 28th International Conference on Computational Linguistics

Word embedding models learn semantically rich vector representations of words and are widely used to initialize natural processing language (NLP) models. The popular continuous bag-of-words (CBOW) model of word2vec learns a vector embedding by masking a given word in a sentence and then using the other words as a context to predict it. A limitation of CBOW is that it equally weights the context words when making a prediction, which is inefficient, since some words have higher predictive value than others. We tackle this inefficiency by introducing the Attention Word Embedding (AWE) model, which integrates the attention mechanism into the CBOW model. We also propose AWE-S, which incorporates subword information. We demonstrate that AWE and AWE-S outperform the state-of-the-art word embedding models both on a variety of word similarity datasets and when used for initialization of NLP models.