Shivani Kumar


2024

pdf bib
SemEval 2024 - Task 10: Emotion Discovery and Reasoning its Flip in Conversation (EDiReF)
Shivani Kumar | Md. Shad Akhtar | Erik Cambria | Tanmoy Chakraborty
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

We present SemEval-2024 Task 10, a shared task centred on identifying emotions and finding the rationale behind their flips within monolingual English and Hindi-English code-mixed dialogues. This task comprises three distinct subtasks – emotion recognition in conversation for code-mixed dialogues, emotion flip reasoning for code-mixed dialogues, and emotion flip reasoning for English dialogues. Participating systems were tasked to automatically execute one or more of these subtasks. The datasets for these tasks comprise manually annotated conversations focusing on emotions and triggers for emotion shifts.1 A total of 84 participants engaged in this task, with the most adept systems attaining F1-scores of 0.70, 0.79, and 0.76 for the respective subtasks. This paper summarises the results and findings from 24 teams alongside their system descriptions.

pdf bib
Harmonizing Code-mixed Conversations: Personality-assisted Code-mixed Response Generation in Dialogues
Shivani Kumar | Tanmoy Chakraborty
Findings of the Association for Computational Linguistics: EACL 2024

Code-mixing, the blending of multiple languages within a single conversation, introduces a distinctive challenge, particularly in the context of response generation. Capturing the intricacies of code-mixing proves to be a formidable task, given the wide-ranging variations influenced by individual speaking styles and cultural backgrounds. In this study, we explore response generation within code-mixed conversations. We introduce a novel approach centered on harnessing the Big Five personality traits acquired in an unsupervised manner from the conversations to bolster the performance of response generation. These inferred personality attributes are seamlessly woven into the fabric of the dialogue context, using a novel fusion mechanism, . It uses an effective two-step attention formulation to fuse the dialogue and personality information. This fusion not only enhances the contextual relevance of generated responses but also elevates the overall performance of the model. Our experimental results, grounded in a dataset comprising of multi-party Hindi-English code-mix conversations, highlight the substantial advantages offered by personality-infused models over their conventional counterparts. This is evident in the increase observed in ROUGE and BLUE scores for the response generation task when the identified personality is seamlessly integrated into the dialogue context. Qualitative assessment for personality identification and response generation aligns well with our quantitative results.

pdf bib
Adding SPICE to Life: Speaker Profiling in Multiparty Conversations
Shivani Kumar | Rishabh Gupta | Md. Shad Akhtar | Tanmoy Chakraborty
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In the realm of conversational dynamics, individual idiosyncrasies challenge the suitability of a one-size-fits-all approach for dialogue agent responses. Prior studies often assumed the speaker’s persona’s immediate availability, a premise not universally applicable. To address this gap, we explore the Speaker Profiling in Conversations (SPC) task, aiming to synthesize persona attributes for each dialogue participant. SPC comprises three core subtasks: persona discovery, persona-type identification, and persona-value extraction. The first subtask identifies persona-related utterances, the second classifies specific attributes, and the third extracts precise values for the persona. To confront this multifaceted challenge, we’ve diligently compiled SPICE, an annotated dataset, underpinning our thorough evaluation of diverse baseline models. Additionally, we benchmark these findings against our innovative neural model, SPOT, presenting an exhaustive analysis encompassing a nuanced assessment of quantitative and qualitative merits and limitations.

2023

pdf bib
From Multilingual Complexity to Emotional Clarity: Leveraging Commonsense to Unveil Emotions in Code-Mixed Dialogues
Shivani Kumar | Ramaneswaran S | Md Akhtar | Tanmoy Chakraborty
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Understanding emotions during conversation is a fundamental aspect of human communication, driving NLP research for Emotion Recognition in Conversation (ERC). While considerable research has focused on discerning emotions of individual speakers in monolingual dialogues, understanding the emotional dynamics in code-mixed conversations has received relatively less attention. This motivates our undertaking of ERC for code-mixed conversations in this study. Recognizing that emotional intelligence encompasses a comprehension of worldly knowledge, we propose an innovative approach that integrates commonsense information with dialogue context to facilitate a deeper understanding of emotions. To achieve this, we devise an efficient pipeline that extracts relevant commonsense from existing knowledge graphs based on the code-mixed input. Subsequently, we develop an advanced fusion technique that seamlessly combines the acquired commonsense information with the dialogue representation obtained from a dedicated dialogue understanding module. Our comprehensive experimentation showcases the substantial performance improvement obtained through the systematic incorporation of commonsense in ERC. Both quantitative assessments and qualitative analyses further corroborate the validity of our hypothesis, reaffirming the pivotal role of commonsense integration in enhancing ERC.

2022

pdf bib
When did you become so smart, oh wise one?! Sarcasm Explanation in Multi-modal Multi-party Dialogues
Shivani Kumar | Atharva Kulkarni | Md Shad Akhtar | Tanmoy Chakraborty
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Indirect speech such as sarcasm achieves a constellation of discourse goals in human communication. While the indirectness of figurative language warrants speakers to achieve certain pragmatic goals, it is challenging for AI agents to comprehend such idiosyncrasies of human communication. Though sarcasm identification has been a well-explored topic in dialogue analysis, for conversational systems to truly grasp a conversation’s innate meaning and generate appropriate responses, simply detecting sarcasm is not enough; it is vital to explain its underlying sarcastic connotation to capture its true essence. In this work, we study the discourse structure of sarcastic conversations and propose a novel task – Sarcasm Explanation in Dialogue (SED). Set in a multimodal and code-mixed setting, the task aims to generate natural language explanations of satirical conversations. To this end, we curate WITS, a new dataset to support our task. We propose MAF (Modality Aware Fusion), a multimodal context-aware attention and global information fusion module to capture multimodality and use it to benchmark WITS. The proposed attention module surpasses the traditional multimodal fusion baselines and reports the best performance on almost all metrics. Lastly, we carry out detailed analysis both quantitatively and qualitatively.