Shubham Mittal


2023

pdf bib
mOKB6: A Multilingual Open Knowledge Base Completion Benchmark
Shubham Mittal | Keshav Kolluru | Soumen Chakrabarti | Mausam
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Automated completion of open knowledge bases (Open KBs), which are constructed from triples of the form (subject phrase, relation phrase, object phrase), obtained via open information extraction (Open IE) system, are useful for discovering novel facts that may not be directly present in the text. However, research in Open KB completion (Open KBC) has so far been limited to resource-rich languages like English. Using the latest advances in multilingual Open IE, we construct the first multilingual Open KBC dataset, called mOKB6, containing facts from Wikipedia in six languages (including English). Improvingthe previous Open KB construction pipeline by doing multilingual coreference resolution andkeeping only entity-linked triples, we create a dense Open KB. We experiment with several models for the task and observe a consistent benefit of combining languages with the help of shared embedding space as well as translations of facts. We also observe that current multilingual models struggle to remember facts seen in languages of different scripts.

pdf bib
Lost in Translation, Found in Spans: Identifying Claims in Multilingual Social Media
Shubham Mittal | Megha Sundriyal | Preslav Nakov
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Claim span identification (CSI) is an important step in fact-checking pipelines, aiming to identify text segments that contain a check-worthy claim or assertion in a social media post. Despite its importance to journalists and human fact-checkers, it remains a severely understudied problem, and the scarce research on this topic so far has only focused on English. Here we aim to bridge this gap by creating a novel dataset, X-CLAIM, consisting of 7K real-world claims collected from numerous social media platforms in five Indian languages and English. We report strong baselines with state-of-the-art encoder-only language models (e.g., XLM-R) and we demonstrate the benefits of training on multiple languages over alternative cross-lingual transfer methods such as zero-shot transfer, or training on translated data, from a high-resource language such as English. We evaluate generative large language models from the GPT series using prompting methods on the X-CLAIM dataset and we find that they underperform the smaller encoder-only language models for low-resource languages.

2022

pdf bib
IITD at WANLP 2022 Shared Task: Multilingual Multi-Granularity Network for Propaganda Detection
Shubham Mittal | Preslav Nakov
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

We present our system for the two subtasks of the shared task on propaganda detection in Arabic, part of WANLP’2022. Subtask 1 is a multi-label classification problem to find the propaganda techniques used in a given tweet. Our system for this task uses XLM-R to predict probabilities for the target tweet to use each of the techniques. In addition to finding the techniques, subtask 2 further asks to identify the textual span for each instance of each technique that is present in the tweet; the task can be modelled as a sequence tagging problem. We use a multi-granularity network with mBERT encoder for subtask 2. Overall, our system ranks second for both subtasks (out of 14 and 3 participants, respectively). Our experimental results and analysis show that it does not help to use a much larger English corpus annotated with propaganda techniques, regardless of whether used in English or after translation to Arabic.

pdf bib
Alignment-Augmented Consistent Translation for Multilingual Open Information Extraction
Keshav Kolluru | Muqeeth Mohammed | Shubham Mittal | Soumen Chakrabarti | Mausam
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Progress with supervised Open Information Extraction (OpenIE) has been primarily limited to English due to the scarcity of training data in other languages. In this paper, we explore techniques to automatically convert English text for training OpenIE systems in other languages. We introduce the Alignment-Augmented Constrained Translation (AACTrans) model to translate English sentences and their corresponding extractions consistently with each other — with no changes to vocabulary or semantic meaning which may result from independent translations. Using the data generated with AACTrans, we train a novel two-stage generative OpenIE model, which we call Gen2OIE, that outputs for each sentence: 1) relations in the first stage and 2) all extractions containing the relation in the second stage. Gen2OIE increases relation coverage using a training data transformation technique that is generalizable to multiple languages, in contrast to existing models that use an English-specific training loss. Evaluations on 5 languages — Spanish, Portuguese, Chinese, Hindi and Telugu — show that the Gen2OIE with AACTrans data outperforms prior systems by a margin of 6-25% in F1.