Shuzhou Yuan


2024

pdf bib
GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism
Shuzhou Yuan | Michael Färber
Findings of the Association for Computational Linguistics: NAACL 2024

Pretrained Language Models (PLMs) benefit from external knowledge stored in graph structures for various downstream tasks. However, bridging the modality gap between graph structures and text remains a significant challenge. Traditional methods like linearizing graphs for PLMs lose vital graph connectivity, whereas Graph Neural Networks (GNNs) require cumbersome processes for integration into PLMs. In this work, we propose a novel graph-guided self-attention mechanism, GraSAME. GraSAME seamlessly incorporates token-level structural information into PLMs without necessitating additional alignment or concatenation efforts. As an end-to-end, lightweight multimodal module, GraSAME follows a multi-task learning strategy and effectively bridges the gap between graph and textual modalities, facilitating dynamic interactions between GNNs and PLMs. Our experiments on the graph-to-text generation task demonstrate that GraSAME outperforms baseline models and achieves results comparable to state-of-the-art (SOTA) models on WebNLG datasets. Furthermore, compared to SOTA models, GraSAME eliminates the need for extra pre-training tasks to adjust graph inputs and reduces the number of trainable parameters by over 100 million.

pdf bib
GNNavi: Navigating the Information Flow in Large Language Models by Graph Neural Network
Shuzhou Yuan | Ercong Nie | Michael Färber | Helmut Schmid | Hinrich Schuetze
Findings of the Association for Computational Linguistics ACL 2024

Large Language Models (LLMs) exhibit strong In-Context Learning (ICL) capabilities when prompts with demonstrations are used. However, fine-tuning still remains crucial to further enhance their adaptability. Prompt-based fine-tuning proves to be an effective fine-tuning method in low-data scenarios, but high demands on computing resources limit its practicality. We address this issue by introducing a prompt-based parameter-efficient fine-tuning (PEFT) approach. GNNavi leverages insights into ICL’s information flow dynamics, which indicates that label words act in prompts as anchors for information propagation. GNNavi employs a Graph Neural Network (GNN) layer to precisely guide the aggregation and distribution of information flow during the processing of prompts by hardwiring the desired information flow into the GNN. Our experiments on text classification tasks with GPT-2 and Llama2 show GNNavi surpasses standard prompt-based fine-tuning methods in few-shot settings by updating just 0.2% to 0.5% of parameters. We compare GNNavi with prevalent PEFT approaches, such as prefix tuning, LoRA and Adapter in terms of performance and efficiency. Our analysis reveals that GNNavi enhances information flow and ensures a clear aggregation process.

pdf bib
ToPro: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks
Bolei Ma | Ercong Nie | Shuzhou Yuan | Helmut Schmid | Michael Färber | Frauke Kreuter | Hinrich Schuetze
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (ToPro), which facilitates the prompt-based method for token-level sequence labeling tasks. The ToPro method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that ToPro-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that ToPro performs much better than the current in-context learning method. Overall, the performance improvements show that ToPro could potentially serve as a novel and simple benchmarking method for sequence labeling tasks.

2023

pdf bib
Evaluating Generative Models for Graph-to-Text Generation
Shuzhou Yuan | Michael Faerber
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Large language models (LLMs) have been widely employed for graph-to-text generation tasks. However, the process of finetuning LLMs requires significant training resources and annotation work. In this paper, we explore the capability of generative models to generate descriptive text from graph data in a zero-shot setting. Specifically, we evaluate GPT-3 and ChatGPT on two graph-to-text datasets and compare their performance with that of finetuned LLM models such as T5 and BART. Our results demonstrate that generative models are capable of generating fluent and coherent text, achieving BLEU scores of 10.57 and 11.08 for the AGENDA and WebNLG datasets, respectively. However, our error analysis reveals that generative models still struggle with understanding the semantic relations between entities, and they also tend to generate text with hallucinations or irrelevant information. As a part of error analysis, we utilize BERT to detect machine-generated text and achieve high macro-F1 scores. We have made the text generated by generative models publicly available.

2022

pdf bib
Separating Hate Speech and Offensive Language Classes via Adversarial Debiasing
Shuzhou Yuan | Antonis Maronikolakis | Hinrich Schütze
Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)

Research to tackle hate speech plaguing online media has made strides in providing solutions, analyzing bias and curating data. A challenging problem is ambiguity between hate speech and offensive language, causing low performance both overall and specifically for the hate speech class. It can be argued that misclassifying actual hate speech content as merely offensive can lead to further harm against targeted groups. In our work, we mitigate this potentially harmful phenomenon by proposing an adversarial debiasing method to separate the two classes. We show that our method works for English, Arabic German and Hindi, plus in a multilingual setting, improving performance over baselines.