Keywords, that is, content-relevant words in summaries play an important role in efficient information conveyance, making it critical to assess if system-generated summaries contain such informative words during evaluation. However, existing evaluation metrics for extreme summarization models do not pay explicit attention to keywords in summaries, leaving developers ignorant of their presence. To address this issue, we present a keyword-oriented evaluation metric, dubbed ROUGE-K, which provides a quantitative answer to the question of – How well do summaries include keywords? Through the lens of this keyword-aware metric, we surprisingly find that a current strong baseline model often misses essential information in their summaries. Our analysis reveals that human annotators indeed find the summaries with more keywords to be more relevant to the source documents. This is an important yet previously overlooked aspect in evaluating summarization systems. Finally, to enhance keyword inclusion, we propose four approaches for incorporating word importance into a transformer-based model and experimentally show that it enables guiding models to include more keywords while keeping the overall quality.
Detecting opinions, their holders and targets in parliamentary debates provides an interesting layer of analysis, for example, to identify frequent targets of opinions for specific topics, actors or parties. In the paper, we present GePaDe-ORL, a new dataset for German parliamentary debates where subjective expressions, their opinion holders and targets have been annotated. We describe the annotation process and report baselines for predicting those annotations in our new dataset.
In this survey, we provide a systematic review of recent work on modelling morality in text, an area of research that has garnered increasing attention in recent years. Our survey is motivated by the importance of modelling decisions on the created resources, the models trained on these resources and the analyses that result from the models’ predictions. We review work at the interface of NLP, Computational Social Science and Psychology and give an overview of the different goals and research questions addressed in the papers, their underlying theoretical backgrounds and the methods that have been applied to pursue these goals. We then identify and discuss challenges and research gaps, such as the lack of a theoretical framework underlying the operationalisation of morality in text, the low IAA reported for manyhuman-annotated resulting resources and the lack of validation of newly proposed resources and analyses.
This paper presents a new perspective on framing through the lens of speech acts and investigates how politicians make use of different pragmatic speech act functions in political debates. To that end, we created a new resource of German parliamentary debates, annotated with fine-grained speech act types. Our hierarchical annotation scheme distinguishes between cooperation and conflict communication, further structured into six subtypes, such as informative, declarative or argumentative-critical speech acts, with 14 fine-grained classes at the lowest level. We present classification baselines on our new data and show that the fine-grained classes in our schema can be predicted with an avg. F1 of around 82.0%. We then use our classifier to analyse the use of speech acts in a large corpus of parliamentary debates over a time span from 2003–2023.
This paper presents GePaDe_SpkAtt , a new corpus for speaker attribution in German parliamentary debates, with more than 7,700 manually annotated events of speech, thought and writing. Our role inventory includes the sources, addressees, messages and topics of the speech event and also two additional roles, medium and evidence. We report baseline results for the automatic prediction of speech events and their roles, with high scores for both, event triggers and roles. Then we apply our model to predict speech events in 20 years of parliamentary debates and investigate the use of factives in the rhetoric of MPs.
We present GenGO, a system for exploring papers published in ACL conferences. Paper data stored in our database is enriched with multi-aspect summaries, extracted named entities, a field of study label, and text embeddings by our data processing pipeline. These metadata are used in our web-based user interface to enable researchers to quickly find papers relevant to their interests, and grasp an overview of papers without reading full-text of papers. To make GenGO to be available online as long as possible, we design GenGO to be simple and efficient to reduce maintenance and financial costs. In addition, the modularity of our data processing pipeline lets developers easily extend it to add new features. We make our code available to foster open development and transparency: https://gengo.sotaro.io.
Extensive efforts in the past have been directed toward the development of summarization datasets. However, a predominant number of these resources have been (semi)-automatically generated, typically through web data crawling. This resulted in subpar resources for training and evaluating summarization systems, a quality compromise that is arguably due to the substantial costs associated with generating ground-truth summaries, particularly for diverse languages and specialized domains. To address this issue, we present ACLSum, a novel summarization dataset carefully crafted and evaluated by domain experts. In contrast to previous datasets, ACLSum facilitates multi-aspect summarization of scientific papers, covering challenges, approaches, and outcomes in depth. Through extensive experiments, we evaluate the quality of our resource and the performance of models based on pretrained language models (PLMs) and state-of-the-art large language models (LLMs). Additionally, we explore the effectiveness of extract-then-abstract versus abstractive end-to-end summarization within the scholarly domain on the basis of automatically discovered aspects. While the former performs comparably well to the end-to-end approach with pretrained language models regardless of the potential error propagation issue, the prompting-based approach with LLMs shows a limitation in extracting sentences from source documents.
While pretrained language models (PLMs) primarily serve as general-purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on the lexical specialization of monolingual PLMs with immense quantities of monolingual constraints, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we use BabelNet’s multilingual synsets to create synonym pairs (or synonym-gloss pairs) across 50 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings substantial gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we show that the number of specialization constraints plays a much greater role than the set of languages from which they originate.
This paper investigates the identification of populist rhetoric in text and presents a novel cross-lingual dataset for this task. Our work is based on the definition of populism as a “communication style of political actors that refers to the people” but also includes anti-elitism as another core feature of populism. Accordingly, we annotate references to The People and The Elite in German and English parliamentary debates with a hierarchical scheme. The paper describes our dataset and annotation procedure and reports inter-annotator agreement for this task. Next, we compare and evaluate different transformer-based model architectures on a German dataset and report results for zero-shot learning on a smaller English dataset. We then show that semi-supervised tri-training can improve results in the cross-lingual setting. Our dataset can be used to investigate how political actors talk about The Elite and The People and to study how populist rhetoric is used as a strategic device.
Demographic factors (e.g., gender or age) shape our language. Previous work showed that incorporating demographic factors can consistently improve performance for various NLP tasks with traditional NLP models. In this work, we investigate whether these previous findings still hold with state-of-the-art pretrained Transformer-based language models (PLMs). We use three common specialization methods proven effective for incorporating external knowledge into pretrained Transformers (e.g., domain-specific or geographic knowledge). We adapt the language representations for the demographic dimensions of gender and age, using continuous language modeling and dynamic multi-task learning for adaptation, where we couple language modeling objectives with the prediction of demographic classes. Our results, when employing a multilingual PLM, show substantial gains in task performance across four languages (English, German, French, and Danish), which is consistent with the results of previous work. However, controlling for confounding factors – primarily domain and language proficiency of Transformer-based PLMs – shows that downstream performance gains from our demographic adaptation do not actually stem from demographic knowledge. Our results indicate that demographic specialization of PLMs, while holding promise for positive societal impact, still represents an unsolved problem for (modern) NLP.
We present a cross-domain approach for automated measurement and context extraction based on pre-trained language models. We construct a multi-source, multi-domain corpus and train an end-to-end extraction pipeline. We then apply multi-source task-adaptive pre-training and fine-tuning to benchmark the cross-domain generalization capability of our model. Further, we conceptualize and apply a task-specific error analysis and derive insights for future work. Our results suggest that multi-source training leads to the best overall results, while single-source training yields the best results for the respective individual domain. While our setup is successful at extracting quantity values and units, more research is needed to improve the extraction of contextual entities. We make the cross-domain corpus used in this work available online.
Cross-lingual transfer learning from high-resource to medium and low-resource languages has shown encouraging results. However, the scarcity of resources in target languages remains a challenge. In this work, we resort to data augmentation and continual pre-training for domain adaptation to improve cross-lingual abusive language detection. For data augmentation, we analyze two existing techniques based on vicinal risk minimization and propose MIXAG, a novel data augmentation method which interpolates pairs of instances based on the angle of their representations. Our experiments involve seven languages typologically distinct from English and three different domains. The results reveal that the data augmentation strategies can enhance few-shot cross-lingual abusive language detection. Specifically, we observe that consistently in all target languages, MIXAG improves significantly in multidomain and multilingual environments. Finally, we show through an error analysis how the domain adaptation can favour the class of abusive texts (reducing false negatives), but at the same time, declines the precision of the abusive language detection model.
This paper presents a framework for studying second-level political agenda setting in parliamentary debates, based on the selection of policy topics used by political actors to discuss a specific issue on the parliamentary agenda. For example, the COVID-19 pandemic as an agenda item can be contextualised as a health issue or as a civil rights issue, as a matter of macroeconomics or can be discussed in the context of social welfare. Our framework allows us to observe differences regarding how different parties discuss the same agenda item by emphasizing different topical aspects of the item. We apply and evaluate our framework on data from the German Bundestag and discuss the merits and limitations of our approach. In addition, we present a new annotated data set of parliamentary debates, following the coding schema of policy topics developed in the Comparative Agendas Project (CAP), and release models for topic classification in parliamentary debates.
Research on (multi-domain) task-oriented dialog (TOD) has predominantly focused on the English language, primarily due to the shortage of robust TOD datasets in other languages, preventing the systematic investigation of cross-lingual transfer for this crucial NLP application area. In this work, we introduce Multi2WOZ, a new multilingual multi-domain TOD dataset, derived from the well-established English dataset MultiWOZ, that spans four typologically diverse languages: Chinese, German, Arabic, and Russian. In contrast to concurrent efforts, Multi2WOZ contains gold-standard dialogs in target languages that are directly comparable with development and test portions of the English dataset, enabling reliable and comparative estimates of cross-lingual transfer performance for TOD. We then introduce a new framework for multilingual conversational specialization of pretrained language models (PrLMs) that aims to facilitate cross-lingual transfer for arbitrary downstream TOD tasks. Using such conversational PrLMs specialized for concrete target languages, we systematically benchmark a number of zero-shot and few-shot cross-lingual transfer approaches on two standard TOD tasks: Dialog State Tracking and Response Retrieval. Our experiments show that, in most setups, the best performance entails the combination of (i) conversational specialization in the target language and (ii) few-shot transfer for the concrete TOD task. Most importantly, we show that our conversational specialization in the target language allows for an exceptionally sample-efficient few-shot transfer for downstream TOD tasks.
Robot-Assisted minimally invasive robotic surgery is the gold standard for the surgical treatment of many pathological conditions, and several manuals and academic papers describe how to perform these interventions. These high-quality, often peer-reviewed texts are the main study resource for medical personnel and consequently contain essential procedural domain-specific knowledge. The procedural knowledge therein described could be extracted, e.g., on the basis of semantic parsing models, and used to develop clinical decision support systems or even automation methods for some procedure’s steps. However, natural language understanding algorithms such as, for instance, semantic role labelers have lower efficacy and coverage issues when applied to domain others than those they are typically trained on (i.e., newswire text). To overcome this problem, starting from PropBank frames, we propose a new linguistic resource specific to the robotic-surgery domain, named Robotic Surgery Procedural Framebank (RSPF). We extract from robotic-surgical texts verbs and nouns that describe surgical actions and extend PropBank frames by adding any of new lemmas, frames or role sets required to cover missing lemmas, specific frames describing the surgical significance, or new semantic roles used in procedural surgical language. Our resource is publicly available and can be used to annotate corpora in the surgical domain to train and evaluate Semantic Role Labeling (SRL) systems in a challenging fine-grained domain setting.
In this paper, we provide an overview of the SV-Ident shared task as part of the 3rd Workshop on Scholarly Document Processing (SDP) at COLING 2022. In the shared task, participants were provided with a sentence and a vocabulary of variables, and asked to identify which variables, if any, are mentioned in individual sentences from scholarly documents in full text. Two teams made a total of 9 submissions to the shared task leaderboard. While none of the teams improve on the baseline systems, we still draw insights from their submissions. Furthermore, we provide a detailed evaluation. Data and baselines for our shared task are freely available at https://github.com/vadis-project/sv-ident.
This paper introduces our proposed system for the MIA Shared Task on Cross-lingual Openretrieval Question Answering (COQA). In this challenging scenario, given an input question the system has to gather evidence documents from a multilingual pool and generate from them an answer in the language of the question. We devised several approaches combining different model variants for three main components: Data Augmentation, Passage Retrieval, and Answer Generation. For passage retrieval, we evaluated the monolingual BM25 ranker against the ensemble of re-rankers based on multilingual pretrained language models (PLMs) and also variants of the shared task baseline, re-training it from scratch using a recently introduced contrastive loss that maintains a strong gradient signal throughout training by means of mixed negative samples. For answer generation, we focused on languageand domain-specialization by means of continued language model (LM) pretraining of existing multilingual encoders. Additionally, for both passage retrieval and answer generation, we augmented the training data provided by the task organizers with automatically generated question-answer pairs created from Wikipedia passages to mitigate the issue of data scarcity, particularly for the low-resource languages for which no training data were provided. Our results show that language- and domain-specialization as well as data augmentation help, especially for low-resource languages.
Although much work in NLP has focused on measuring and mitigating stereotypical bias in semantic spaces, research addressing bias in computational argumentation is still in its infancy. In this paper, we address this research gap and conduct a thorough investigation of bias in argumentative language models. To this end, we introduce ABBA, a novel resource for bias measurement specifically tailored to argumentation. We employ our resource to assess the effect of argumentative fine-tuning and debiasing on the intrinsic bias found in transformer-based language models using a lightweight adapter-based approach that is more sustainable and parameter-efficient than full fine-tuning. Finally, we analyze the potential impact of language model debiasing on the performance in argument quality prediction, a downstream task of computational argumentation. Our results show that we are able to successfully and sustainably remove bias in general and argumentative language models while preserving (and sometimes improving) model performance in downstream tasks. We make all experimental code and data available at https://github.com/umanlp/FairArgumentativeLM.
Recent work has shown that self-supervised dialog-specific pretraining on large conversational datasets yields substantial gains over traditional language modeling (LM) pretraining in downstream task-oriented dialog (TOD). These approaches, however, exploit general dialogic corpora (e.g., Reddit) and thus presumably fail to reliably embed domain-specific knowledge useful for concrete downstream TOD domains. In this work, we investigate the effects of domain specialization of pretrained language models (PLMs) for TOD. Within our DS-TOD framework, we first automatically extract salient domain-specific terms, and then use them to construct DomainCC and DomainReddit – resources that we leverage for domain-specific pretraining, based on (i) masked language modeling (MLM) and (ii) response selection (RS) objectives, respectively. We further propose a resource-efficient and modular domain specialization by means of domain adapters – additional parameter-light layers in which we encode the domain knowledge. Our experiments with prominent TOD tasks – dialog state tracking (DST) and response retrieval (RR) – encompassing five domains from the MultiWOZ benchmark demonstrate the effectiveness of DS-TOD. Moreover, we show that the light-weight adapter-based specialization (1) performs comparably to full fine-tuning in single domain setups and (2) is particularly suitable for multi-domain specialization, where besides advantageous computational footprint, it can offer better TOD performance.
In this paper, we introduce the task of political coalition signal prediction from text, that is, the task of recognizing from the news coverage leading up to an election the (un)willingness of political parties to form a government coalition. We decompose our problem into two related, but distinct tasks: (i) predicting whether a reported statement from a politician or a journalist refers to a potential coalition and (ii) predicting the polarity of the signal – namely, whether the speaker is in favour of or against the coalition. For this, we explore the benefits of multi-task learning and investigate which setup and task formulation is best suited for each sub-task. We evaluate our approach, based on hand-coded newspaper articles, covering elections in three countries (Ireland, Germany, Austria) and two languages (English, German). Our results show that the multi-task learning approach can further improve results over a strong monolingual transfer learning baseline.
Fake news articles often stir the readers’ attention by means of emotional appeals that arouse their feelings. Unlike in short news texts, authors of longer articles can exploit such affective factors to manipulate readers by adding exaggerations or fabricating events, in order to affect the readers’ emotions. To capture this, we propose in this paper to model the flow of affective information in fake news articles using a neural architecture. The proposed model, FakeFlow, learns this flow by combining topic and affective information extracted from text. We evaluate the model’s performance with several experiments on four real-world datasets. The results show that FakeFlow achieves superior results when compared against state-of-the-art methods, thus confirming the importance of capturing the flow of the affective information in news articles.
Recent research efforts in NLP have demonstrated that distributional word vector spaces often encode stereotypical human biases, such as racism and sexism. With word representations ubiquitously used in NLP models and pipelines, this raises ethical issues and jeopardizes the fairness of language technologies. While there exists a large body of work on bias measures and debiasing methods, to date, there is no platform that would unify these research efforts and make bias measuring and debiasing of representation spaces widely accessible. In this work, we present DebIE, the first integrated platform for (1) measuring and (2) mitigating bias in word embeddings. Given an (i) embedding space (users can choose between the predefined spaces or upload their own) and (ii) a bias specification (users can choose between existing bias specifications or create their own), DebIE can (1) compute several measures of implicit and explicit bias and modify the embedding space by executing two (mutually composable) debiasing models. DebIE’s functionality can be accessed through four different interfaces: (a) a web application, (b) a desktop application, (c) a REST-ful API, and (d) as a command-line application. DebIE is available at: debie.informatik.uni-mannheim.de.
Hyperpartisan news show an extreme manipulation of reality based on an underlying and extreme ideological orientation. Because of its harmful effects at reinforcing one’s bias and the posterior behavior of people, hyperpartisan news detection has become an important task for computational linguists. In this paper, we evaluate two different approaches to detect hyperpartisan news. First, a text masking technique that allows us to compare style vs. topic-related features in a different perspective from previous work. Second, the transformer-based models BERT, XLM-RoBERTa, and M-BERT, known for their ability to capture semantic and syntactic patterns in the same representation. Our results corroborate previous research on this task in that topic-related features yield better results than style-based ones, although they also highlight the relevance of using higher-length n-grams. Furthermore, they show that transformer-based models are more effective than traditional methods, but this at the cost of greater computational complexity and lack of transparency. Based on our experiments, we conclude that the beginning of the news show relevant information for the transformers at distinguishing effectively between left-wing, mainstream, and right-wing orientations.
Recent work has shown that distributional word vector spaces often encode human biases like sexism or racism. In this work, we conduct an extensive analysis of biases in Arabic word embeddings by applying a range of recently introduced bias tests on a variety of embedding spaces induced from corpora in Arabic. We measure the presence of biases across several dimensions, namely: embedding models (Skip-Gram, CBOW, and FastText) and vector sizes, types of text (encyclopedic text, and news vs. user-generated content), dialects (Egyptian Arabic vs. Modern Standard Arabic), and time (diachronic analyses over corpora from different time periods). Our analysis yields several interesting findings, e.g., that implicit gender bias in embeddings trained on Arabic news corpora steadily increases over time (between 2007 and 2017). We make the Arabic bias specifications (AraWEAT) publicly available.
Disambiguation of word senses in context is easy for humans, but is a major challenge for automatic approaches. Sophisticated supervised and knowledge-based models were developed to solve this task. However, (i) the inherent Zipfian distribution of supervised training instances for a given word and/or (ii) the quality of linguistic knowledge representations motivate the development of completely unsupervised and knowledge-free approaches to word sense disambiguation (WSD). They are particularly useful for under-resourced languages which do not have any resources for building either supervised and/or knowledge-based models. In this paper, we present a method that takes as input a standard pre-trained word embedding model and induces a fully-fledged word sense inventory, which can be used for disambiguation in context. We use this method to induce a collection of sense inventories for 158 languages on the basis of the original pre-trained fastText word embeddings by Grave et al., (2018), enabling WSD in these languages. Models and system are available online.
Lexical entailment (LE) is a fundamental asymmetric lexico-semantic relation, supporting the hierarchies in lexical resources (e.g., WordNet, ConceptNet) and applications like natural language inference and taxonomy induction. Multilingual and cross-lingual NLP applications warrant models for LE detection that go beyond language boundaries. As part of SemEval 2020, we carried out a shared task (Task 2) on multilingual and cross-lingual LE. The shared task spans three dimensions: (1) monolingual vs. cross-lingual LE, (2) binary vs. graded LE, and (3) a set of 6 diverse languages (and 15 corresponding language pairs). We offered two different evaluation tracks: (a) Dist: for unsupervised, fully distributional models that capture LE solely on the basis of unannotated corpora, and (b) Any: for externally informed models, allowed to leverage any resources, including lexico-semantic networks (e.g., WordNet or BabelNet). In the Any track, we recieved runs that push state-of-the-art across all languages and language pairs, for both binary LE detection and graded LE prediction.
We present our system for semantic frame induction that showed the best performance in Subtask B.1 and finished as the runner-up in Subtask A of the SemEval 2019 Task 2 on unsupervised semantic frame induction (Qasem-iZadeh et al., 2019). Our approach separates this task into two independent steps: verb clustering using word and their context embeddings and role labeling by combining these embeddings with syntactical features. A simple combination of these steps shows very competitive results and can be extended to process other datasets and languages.
Debate motions (proposals) tabled in the UK Parliament contain information about the stated policy preferences of the Members of Parliament who propose them, and are key to the analysis of all subsequent speeches given in response to them. We attempt to automatically label debate motions with codes from a pre-existing coding scheme developed by political scientists for the annotation and analysis of political parties’ manifestos. We develop annotation guidelines for the task of applying these codes to debate motions at two levels of granularity and produce a dataset of manually labelled examples. We evaluate the annotation process and the reliability and utility of the labelling scheme, finding that inter-annotator agreement is comparable with that of other studies conducted on manifesto data. Moreover, we test a variety of ways of automatically labelling motions with the codes, ranging from similarity matching to neural classification methods, and evaluate them against the gold standard labels. From these experiments, we note that established supervised baselines are not always able to improve over simple lexical heuristics. At the same time, we detect a clear and evident benefit when employing BERT, a state-of-the-art deep language representation model, even in classification scenarios with over 30 different labels and limited amounts of training data.
Grounded in cognitive linguistics, graded lexical entailment (GR-LE) is concerned with fine-grained assertions regarding the directional hierarchical relationships between concepts on a continuous scale. In this paper, we present the first work on cross-lingual generalisation of GR-LE relation. Starting from HyperLex, the only available GR-LE dataset in English, we construct new monolingual GR-LE datasets for three other languages, and combine those to create a set of six cross-lingual GR-LE datasets termed CL-HYPERLEX. We next present a novel method dubbed CLEAR (Cross-Lingual Lexical Entailment Attract-Repel) for effectively capturing graded (and binary) LE, both monolingually in different languages as well as across languages (i.e., on CL-HYPERLEX). Coupled with a bilingual dictionary, CLEAR leverages taxonomic LE knowledge in a resource-rich language (e.g., English) and propagates it to other languages. Supported by cross-lingual LE transfer, CLEAR sets competitive baseline performance on three new monolingual GR-LE datasets and six cross-lingual GR-LE datasets. In addition, we show that CLEAR outperforms current state-of-the-art on binary cross-lingual LE detection by a wide margin for diverse language pairs.
In the last twenty years, political scientists started adopting and developing natural language processing (NLP) methods more actively in order to exploit text as an additional source of data in their analyses. Over the last decade the usage of computational methods for analysis of political texts has drastically expanded in scope, allowing for a sustained growth of the text-as-data community in political science. In political science, NLP methods have been extensively used for a number of analyses types and tasks, including inferring policy position of actors from textual evidence, detecting topics in political texts, and analyzing stylistic aspects of political texts (e.g., assessing the role of language ambiguity in framing the political agenda). Just like in numerous other domains, much of the work on computational analysis of political texts has been enabled and facilitated by the development of resources such as, the topically coded electoral programmes (e.g., the Manifesto Corpus) or topically coded legislative texts (e.g., the Comparative Agenda Project). Political scientists created resources and used available NLP methods to process textual data largely in isolation from the NLP community. At the same time, NLP researchers addressed closely related tasks such as election prediction, ideology classification, and stance detection. In other words, these two communities have been largely agnostic of one another, with NLP researchers mostly unaware of interesting applications in political science and political scientists not applying cutting-edge NLP methodology to their problems. The main goal of this tutorial is to systematize and analyze the body of research work on political texts from both communities. We aim to provide a gentle, all-round introduction to methods and tasks related to computational analysis of political texts. Our vision is to bring the two research communities closer to each other and contribute to faster and more significant developments in this interdisciplinary research area.
We present a detailed theoretical and computational analysis of the Watset meta-algorithm for fuzzy graph clustering, which has been found to be widely applicable in a variety of domains. This algorithm creates an intermediate representation of the input graph, which reflects the “ambiguity” of its nodes. Then, it uses hard clustering to discover clusters in this “disambiguated” intermediate graph. After outlining the approach and analyzing its computational complexity, we demonstrate that Watset shows competitive results in three applications: unsupervised synset induction from a synonymy graph, unsupervised semantic frame induction from dependency triples, and unsupervised semantic class induction from a distributional thesaurus. Our algorithm is generic and can also be applied to other networks of linguistic data.
We introduce Seagle, a platform for comparative evaluation of semantic text encoding models on information retrieval (IR) tasks. Seagle implements (1) word embedding aggregators, which represent texts as algebraic aggregations of pretrained word embeddings and (2) pretrained semantic encoders, and allows for their comparative evaluation on arbitrary (monolingual and cross-lingual) IR collections. We benchmark Seagle’s models on monolingual document retrieval and cross-lingual sentence retrieval. Seagle functionality can be exploited via an easy-to-use web interface and its modular backend (micro-service architecture) can easily be extended with additional semantic search models.
Argumentation is an essential feature of scientific language. We present an annotation study resulting in a corpus of scientific publications annotated with argumentative components and relations. The argumentative annotations have been added to the existing Dr. Inventor Corpus, already annotated for four other rhetorical aspects. We analyze the annotated argumentative structures and investigate the relations between argumentation and other rhetorical aspects of scientific writing, such as discourse roles and citation contexts.
Exponential growth in the number of scientific publications yields the need for effective automatic analysis of rhetorical aspects of scientific writing. Acknowledging the argumentative nature of scientific text, in this work we investigate the link between the argumentative structure of scientific publications and rhetorical aspects such as discourse categories or citation contexts. To this end, we (1) augment a corpus of scientific publications annotated with four layers of rhetoric annotations with argumentation annotations and (2) investigate neural multi-task learning architectures combining argument extraction with a set of rhetorical classification tasks. By coupling rhetorical classifiers with the extraction of argumentative components in a joint multi-task learning setting, we obtain significant performance gains for different rhetorical analysis tasks.
We use dependency triples automatically extracted from a Web-scale corpus to perform unsupervised semantic frame induction. We cast the frame induction problem as a triclustering problem that is a generalization of clustering for triadic data. Our replicable benchmarks demonstrate that the proposed graph-based approach, Triframes, shows state-of-the art results on this task on a FrameNet-derived dataset and performing on par with competitive methods on a verb class clustering task.
Large repositories of scientific literature call for the development of robust methods to extract information from scholarly papers. This problem is addressed by the SemEval 2018 Task 7 on extracting and classifying relations found within scientific publications. In this paper, we present a feature-based and a deep learning-based approach to the task and discuss the results of the system runs that we submitted for evaluation.
Detection of lexico-semantic relations is one of the central tasks of computational semantics. Although some fundamental relations (e.g., hypernymy) are asymmetric, most existing models account for asymmetry only implicitly and use the same concept representations to support detection of symmetric and asymmetric relations alike. In this work, we propose the Dual Tensor model, a neural architecture with which we explicitly model the asymmetry and capture the translation between unspecialized and specialized word embeddings via a pair of tensors. Although our Dual Tensor model needs only unspecialized embeddings as input, our experiments on hypernymy and meronymy detection suggest that it can outperform more complex and resource-intensive models. We further demonstrate that the model can account for polysemy and that it exhibits stable performance across languages.
We present a topic-based analysis of agreement and disagreement in political manifestos, which relies on a new method for topic detection based on key concept clustering. Our approach outperforms both standard techniques like LDA and a state-of-the-art graph-based method, and provides promising initial results for this new task in computational social science.
Interpretability of a predictive model is a powerful feature that gains the trust of users in the correctness of the predictions. In word sense disambiguation (WSD), knowledge-based systems tend to be much more interpretable than knowledge-free counterparts as they rely on the wealth of manually-encoded elements representing word senses, such as hypernyms, usage examples, and images. We present a WSD system that bridges the gap between these two so far disconnected groups of methods. Namely, our system, providing access to several state-of-the-art WSD models, aims to be interpretable as a knowledge-based system while it remains completely unsupervised and knowledge-free. The presented tool features a Web interface for all-word disambiguation of texts that makes the sense predictions human readable by providing interpretable word sense inventories, sense representations, and disambiguation results. We provide a public API, enabling seamless integration.
We present the first attempt at using sequence to sequence neural networks to model text simplification (TS). Unlike the previously proposed automated TS systems, our neural text simplification (NTS) systems are able to simultaneously perform lexical simplification and content reduction. An extensive human evaluation of the output has shown that NTS systems achieve almost perfect grammaticality and meaning preservation of output sentences and higher level of simplification than the state-of-the-art automated TS systems
We provide several methods for sentence-alignment of texts with different complexity levels. Using the best of them, we sentence-align the Newsela corpora, thus providing large training materials for automatic text simplification (ATS) systems. We show that using this dataset, even the standard phrase-based statistical machine translation models for ATS can outperform the state-of-the-art ATS systems.
The current trend in NLP is the use of highly opaque models, e.g. neural networks and word embeddings. While these models yield state-of-the-art results on a range of tasks, their drawback is poor interpretability. On the example of word sense induction and disambiguation (WSID), we show that it is possible to develop an interpretable model that matches the state-of-the-art models in accuracy. Namely, we present an unsupervised, knowledge-free WSID approach, which is interpretable at three levels: word sense inventory, sense feature representations, and disambiguation procedure. Experiments show that our model performs on par with state-of-the-art word sense embeddings and other unsupervised systems while offering the possibility to justify its decisions in human-readable form.
In this paper, we present ContrastMedium, an algorithm that transforms noisy semantic networks into full-fledged, clean taxonomies. ContrastMedium is able to identify the embedded taxonomy structure from a noisy knowledge graph without explicit human supervision such as, for instance, a set of manually selected input root and leaf concepts. This is achieved by leveraging structural information from a companion reference taxonomy, to which the input knowledge graph is linked (either automatically or manually). When used in conjunction with methods for hypernym acquisition and knowledge base linking, our methodology provides a complete solution for end-to-end taxonomy induction. We conduct experiments using automatically acquired knowledge graphs, as well as a SemEval benchmark, and show that our method is able to achieve high performance on the task of taxonomy induction.
In this paper we present a cross-lingual extension of a neural tensor network model for knowledge base completion. We exploit multilingual synsets from BabelNet to translate English triples to other languages and then augment the reference knowledge base with cross-lingual triples. We project monolingual embeddings of different languages to a shared multilingual space and use them for network initialization (i.e., as initial concept embeddings). We then train the network with triples from the cross-lingually augmented knowledge base. Results on WordNet link prediction show that leveraging cross-lingual information yields significant gains over exploiting only monolingual triples.
Political text scaling aims to linearly order parties and politicians across political dimensions (e.g., left-to-right ideology) based on textual content (e.g., politician speeches or party manifestos). Existing models scale texts based on relative word usage and cannot be used for cross-lingual analyses. Additionally, there is little quantitative evidence that the output of these models correlates with common political dimensions like left-to-right orientation. Experimental results show that the semantically-informed scaling models better predict the party positions than the existing word-based models in two different political dimensions. Furthermore, the proposed models exhibit no drop in performance in the cross-lingual compared to monolingual setting.
We introduce a new method for unsupervised knowledge-based word sense disambiguation (WSD) based on a resource that links two types of sense-aware lexical networks: one is induced from a corpus using distributional semantics, the other is manually constructed. The combination of two networks reduces the sparsity of sense representations used for WSD. We evaluate these enriched representations within two lexical sample sense disambiguation benchmarks. Our results indicate that (1) features extracted from the corpus-based resource help to significantly outperform a model based solely on the lexical resource; (2) our method achieves results comparable or better to four state-of-the-art unsupervised knowledge-based WSD systems including three hybrid systems that also rely on text corpora. In contrast to these hybrid methods, our approach does not require access to web search engines, texts mapped to a sense inventory, or machine translation systems.
In this paper, we propose an approach for cross-lingual topical coding of sentences from electoral manifestos of political parties in different languages. To this end, we exploit continuous semantic text representations and induce a joint multilingual semantic vector spaces to enable supervised learning using manually-coded sentences across different languages. Our experimental results show that classifiers trained on multilingual data yield performance boosts over monolingual topic classification.
Eye tracking studies from the past few decades have shaped the way we think of word complexity and cognitive load: words that are long, rare and ambiguous are more difficult to read. However, online processing techniques have been scarcely applied to investigating the reading difficulties of people with autism and what vocabulary is challenging for them. We present parallel gaze data obtained from adult readers with autism and a control group of neurotypical readers and show that the former required higher cognitive effort to comprehend the texts as evidenced by three gaze-based measures. We divide all words into four classes based on their viewing times for both groups and investigate the relationship between longer viewing times and word length, word frequency, and four cognitively-based measures (word concreteness, familiarity, age of acquisition and imagability).
Hypernymy relations (those where an hyponym term shares a “isa” relationship with his hypernym) play a key role for many Natural Language Processing (NLP) tasks, e.g. ontology learning, automatically building or extending knowledge bases, or word sense disambiguation and induction. In fact, such relations may provide the basis for the construction of more complex structures such as taxonomies, or be used as effective background knowledge for many word understanding applications. We present a publicly available database containing more than 400 million hypernymy relations we extracted from the CommonCrawl web corpus. We describe the infrastructure we developed to iterate over the web corpus for extracting the hypernymy relations and store them effectively into a large database. This collection of relations represents a rich source of knowledge and may be useful for many researchers. We offer the tuple dataset for public download and an Application Programming Interface (API) to help other researchers programmatically query the database.
We present an approach for augmenting DBpedia, a very large ontology lying at the heart of the Linked Open Data (LOD) cloud, with domain information. Our approach uses the thematic labels provided for DBpedia entities by Wikipedia categories, and groups them based on a kernel based k-means clustering algorithm. Experiments on gold-standard data show that our approach provides a first solution to the automatic annotation of DBpedia entities with domain labels, thus providing the largest LOD domain-annotated ontology to date.
We present a flexible toolkit-based approach to automatic coreference resolution on German text. We start with our previous work aimed at reimplementing the system from Soon et al. (2001) for English, and extend it to duplicate a version of the state-of-the-art proposal from Klenner and Ailloud (2009). Evaluation performed on a benchmarking dataset, namely the TueBa-D/Z corpus (Hinrichs et al., 2005b), shows that machine learning based coreference resolution can be robustly performed in a language other than English.
Developing a full coreference system able to run all the way from raw text to semantic interpretation is a considerable engineering effort. Accordingly, there is very limited availability of off-the shelf tools for researchers whose interests are not primarily in coreference or others who want to concentrate on a specific aspect of the problem. We present BART, a highly modular toolkit for developing coreference applications. In the Johns Hopkins workshop on using lexical and encyclopedic knowledge for entity disambiguation, the toolkit was used to extend a reimplementation of Soon et al.s proposal with a variety of additional syntactic and knowledge-based features, and experiment with alternative resolution processes, preprocessing tools, and classifiers. BART has been released as open source software and is available from http://www.sfs.uni-tuebingen.de/~versley/BART