Suhang Wang
2024
Universal Prompt Optimizer for Safe Text-to-Image Generation
Zongyu Wu
|
Hongcheng Gao
|
Yueze Wang
|
Xiang Zhang
|
Suhang Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Text-to-Image (T2I) models have shown great performance in generating images based on textual prompts. However, these models are vulnerable to unsafe input to generate unsafe content like sexual, harassment and illegal-activity images. Existing studies based on image checker, model fine-tuning and embedding blocking are impractical in real-world applications. Hence, we propose the first universal **p**rompt **o**ptimizer for **s**afe T2**I** (**POSI**) generation in black-box scenario. We first construct a dataset consisting of toxic-clean prompt pairs by GPT-3.5 Turbo. To guide the optimizer to have the ability of converting toxic prompt to clean prompt while preserving semantic information, we design a novel reward function measuring toxicity and text alignment of generated images and train the optimizer through Proximal Policy Optimization. Experiments show that our approach can effectively reduce the likelihood of various T2I models in generating inappropriate images, with no significant impact on text alignment. It is also flexible to be combined with methods to achieve better performance. Our code is available at [https://github.com/wzongyu/POSI](https://github.com/wzongyu/POSI).
Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
Bowen Jin
|
Chulin Xie
|
Jiawei Zhang
|
Kashob Kumar Roy
|
Yu Zhang
|
Zheng Li
|
Ruirui Li
|
Xianfeng Tang
|
Suhang Wang
|
Yu Meng
|
Jiawei Han
Findings of the Association for Computational Linguistics ACL 2024
Large language models (LLMs), while exhibiting exceptional performance, suffer from hallucinations, especially on knowledge-intensive tasks. Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue. However, in many domains, texts are interconnected (e.g., academic papers in a bibliographic graph are linked by citations and co-authorships) which form a (text-attributed) graph. The knowledge in such graphs is encoded not only in single texts/nodes but also in their associated connections. To facilitate the research of augmenting LLMs with graphs, we manually construct a Graph Reasoning Benchmark dataset called GRBench, containing 1,740 questions that can be answered with the knowledge from 10 domain graphs. Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively. Each Graph-CoT iteration consists of three sub-steps: LLM reasoning, LLM-graph interaction, and graph execution. We conduct systematic experiments with three LLM backbones on GRBench, where Graph-CoT outperforms the baselines consistently. The code is available at https://github.com/PeterGriffinJin/Graph-CoT/.
Search
Co-authors
- Zongyu Wu 1
- Hongcheng Gao 1
- Yueze Wang 1
- Xiang Zhang 1
- Bowen Jin 1
- show all...