As Large Language Models (LLMs) become available in a wider range of domains and applications, evaluating the truthfulness of multilingual LLMs is an issue of increasing relevance. TruthfulQA (Lin et al., 2022) is one of few benchmarks designed to evaluate how models imitate widespread falsehoods. However, it is strongly English-centric and starting to become outdated. We present VeritasQA, a context- and time-independent truthfulness benchmark built with multilingual transferability in mind, and available in Spanish, Catalan, Galician and English. VeritasQA comprises a set of 353 questions and answers inspired by common misconceptions and falsehoods that are not tied to any particular country or recent event. We release VeritasQA under an open license and present the evaluation results of 15 models of various architectures and sizes.
This article describes a compositional distributional method to generate contextualized senses of words and identify their appropriate translations in the target language using monolingual corpora. Word translation is modeled in the same way as contextualization of word meaning, but in a bilingual vector space. The contextualization of meaning is carried out by means of distributional composition within a structured vector space with syntactic dependencies, and the bilingual space is created by means of transfer rules and a bilingual dictionary. A phrase in the source language, consisting of a head and a dependent, is translated into the target language by selecting both the nearest neighbor of the head given the dependent, and the nearest neighbor of the dependent given the head. This process is expanded to larger phrases by means of incremental composition. Experiments were performed on English and Spanish monolingual corpora in order to translate phrasal verbs in context. A new bilingual data set to evaluate strategies aimed at translating phrasal verbs in restricted syntactic domains has been created and released.
This paper presents a new multilingual corpus with semantic annotation of collocations in English, Portuguese, and Spanish. The whole resource contains 155k tokens and 1,526 collocations labeled in context. The annotated examples belong to three syntactic relations (adjective-noun, verb-object, and nominal compounds), and represent 58 lexical functions in the Meaning-Text Theory (e.g., Oper, Magn, Bon, etc.). Each collocation was annotated by three linguists and the final resource was revised by a team of experts. The resulting corpus can serve as a basis to evaluate different approaches for collocation identification, which in turn can be useful for different NLP tasks such as natural language understanding or natural language generation.