Taihao Li


2024

pdf bib
Amanda: Adaptively Modality-Balanced Domain Adaptation for Multimodal Emotion Recognition
Xinxin Zhang | Jun Sun | Simin Hong | Taihao Li
Findings of the Association for Computational Linguistics ACL 2024

This paper investigates unsupervised multimodal domain adaptation for multimodal emotion recognition, which is a solution for data scarcity yet remains under studied. Due to the varying distribution discrepancies of different modalities between source and target domains, the primary challenge lies in how to balance the domain alignment across modalities to guarantee they are all well aligned. To achieve this, we first develop our model based on the information bottleneck theory to learn optimal representation for each modality independently. Then, we align the domains via matching the label distributions and the representations. In order to balance the representation alignment, we propose to minimize a surrogate of the alignment losses, which is equivalent to adaptively adjusting the weights of the modalities throughout training, thus achieving balanced domain alignment across modalities. Overall, the proposed approach features Adaptively modality-balanced domain adaptation, dubbed Amanda, for multimodal emotion recognition. Extensive empirical results on commonly used benchmark datasets demonstrate that Amanda significantly outperforms competing approaches. The code is available at https://github.com/sunjunaimer/Amanda.

2023

pdf bib
Layer-wise Fusion with Modality Independence Modeling for Multi-modal Emotion Recognition
Jun Sun | Shoukang Han | Yu-Ping Ruan | Xiaoning Zhang | Shu-Kai Zheng | Yulong Liu | Yuxin Huang | Taihao Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-modal emotion recognition has gained increasing attention in recent years due to its widespread applications and the advances in multi-modal learning approaches. However, previous studies primarily focus on developing models that exploit the unification of multiple modalities. In this paper, we propose that maintaining modality independence is beneficial for the model performance. According to this principle, we construct a dataset, and devise a multi-modal transformer model. The new dataset, CHinese Emotion Recognition dataset with Modality-wise Annotions, abbreviated as CHERMA, provides uni-modal labels for each individual modality, and multi-modal labels for all modalities jointly observed. The model consists of uni-modal transformer modules that learn representations for each modality, and a multi-modal transformer module that fuses all modalities. All the modules are supervised by their corresponding labels separately, and the forward information flow is uni-directionally from the uni-modal modules to the multi-modal module. The supervision strategy and the model architecture guarantee each individual modality learns its representation independently, and meanwhile the multi-modal module aggregates all information. Extensive empirical results demonstrate that our proposed scheme outperforms state-of-the-art alternatives, corroborating the importance of modality independence in multi-modal emotion recognition. The dataset and codes are availabel at https://github.com/sunjunaimer/LFMIM