Code-mixing, the blending of multiple languages within a single conversation, introduces a distinctive challenge, particularly in the context of response generation. Capturing the intricacies of code-mixing proves to be a formidable task, given the wide-ranging variations influenced by individual speaking styles and cultural backgrounds. In this study, we explore response generation within code-mixed conversations. We introduce a novel approach centered on harnessing the Big Five personality traits acquired in an unsupervised manner from the conversations to bolster the performance of response generation. These inferred personality attributes are seamlessly woven into the fabric of the dialogue context, using a novel fusion mechanism, . It uses an effective two-step attention formulation to fuse the dialogue and personality information. This fusion not only enhances the contextual relevance of generated responses but also elevates the overall performance of the model. Our experimental results, grounded in a dataset comprising of multi-party Hindi-English code-mix conversations, highlight the substantial advantages offered by personality-infused models over their conventional counterparts. This is evident in the increase observed in ROUGE and BLUE scores for the response generation task when the identified personality is seamlessly integrated into the dialogue context. Qualitative assessment for personality identification and response generation aligns well with our quantitative results.
Despite the widespread adoption, there is a lack of research into how various critical aspects of pretrained language models (PLMs) affect their performance in hate speech detection. Through five research questions, our findings and recommendations lay the groundwork for empirically investigating different aspects of PLMs’ use in hate speech detection. We deep dive into comparing different pretrained models, evaluating their seed robustness, finetuning settings, and the impact of pretraining data collection time. Our analysis reveals early peaks for downstream tasks during pretraining, the limited benefit of employing a more recent pretraining corpus, and the significance of specific layers during finetuning. We further call into question the use of domain-specific models and highlight the need for dynamic datasets for benchmarking hate speech detection.
Memes have evolved as a prevalent medium for diverse communication, ranging from humour to propaganda. With the rising popularity of image-focused content, there is a growing need to explore its potential harm from different aspects. Previous studies have analyzed memes in closed settings - detecting harm, applying semantic labels, and offering natural language explanations. To extend this research, we introduce MemeMQA, a multimodal question-answering framework aiming to solicit accurate responses to structured questions while providing coherent explanations. We curate MemeMQACorpus, a new dataset featuring 1,880 questions related to 1,122 memes with corresponding answer-explanation pairs. We further propose ARSENAL, a novel two-stage multimodal framework that leverages the reasoning capabilities of LLMs to address MemeMQA. We benchmark MemeMQA using competitive baselines and demonstrate its superiority - ~18% enhanced answer prediction accuracy and distinct text generation lead across various metrics measuring lexical and semantic alignment over the best baseline. We analyze ARSENAL’s robustness through diversification of question-set, confounder-based evaluation regarding MemeMQA’s generalizability, and modality-specific assessment, enhancing our understanding of meme interpretation in the multimodal communication landscape.
Employing language models to generate explanations for an incoming implicit hate post is an active area of research. The explanation is intended to make explicit the underlying stereotype and aid content moderators. The training often combines top-k relevant knowledge graph (KG) tuples to provide world knowledge and improve performance on standard metrics. Interestingly, our study presents conflicting evidence for the role of the quality of KG tuples in generating implicit explanations. Consequently, simpler models incorporating external toxicity signals outperform KG-infused models. Compared to the KG-based setup, we observe a comparable performance for SBIC (LatentHatred) datasets with a performance variation of +0.44 (+0.49), +1.83 (-1.56), and -4.59 (+0.77) in BLEU, ROUGE-L, and BERTScore. Further human evaluation and error analysis reveal that our proposed setup produces more precise explanations than zero-shot GPT-3.5, highlighting the intricate nature of the task.
In the realm of conversational dynamics, individual idiosyncrasies challenge the suitability of a one-size-fits-all approach for dialogue agent responses. Prior studies often assumed the speaker’s persona’s immediate availability, a premise not universally applicable. To address this gap, we explore the Speaker Profiling in Conversations (SPC) task, aiming to synthesize persona attributes for each dialogue participant. SPC comprises three core subtasks: persona discovery, persona-type identification, and persona-value extraction. The first subtask identifies persona-related utterances, the second classifies specific attributes, and the third extracts precise values for the persona. To confront this multifaceted challenge, we’ve diligently compiled SPICE, an annotated dataset, underpinning our thorough evaluation of diverse baseline models. Additionally, we benchmark these findings against our innovative neural model, SPOT, presenting an exhaustive analysis encompassing a nuanced assessment of quantitative and qualitative merits and limitations.
The widespread online communication in a modern multilingual world has provided opportunities to blend more than one language (aka code-mixed language) in a single utterance. This has resulted a formidable challenge for the computational models due to the scarcity of annotated data and presence of noise. A potential solution to mitigate the data scarcity problem in low-resource setup is to leverage existing data in resource-rich language through translation. In this paper, we tackle the problem of code-mixed (Hinglish and Bengalish) to English machine translation. First, we synthetically develop HINMIX, a parallel corpus of Hinglish to English, with ~4.2M sentence pairs. Subsequently, we propose RCMT, a robust perturbation based joint-training model that learns to handle noise in the real-world code-mixed text by parameter sharing across clean and noisy words. Further, we show the adaptability of RCMT in a zero-shot setup for Bengalish to English translation. Our evaluation and comprehensive analyses qualitatively and quantitatively demonstrate the superiority of RCMT over state-of-the-art code-mixed and robust translation methods.
We present SemEval-2024 Task 10, a shared task centred on identifying emotions and finding the rationale behind their flips within monolingual English and Hindi-English code-mixed dialogues. This task comprises three distinct subtasks – emotion recognition in conversation for code-mixed dialogues, emotion flip reasoning for code-mixed dialogues, and emotion flip reasoning for English dialogues. Participating systems were tasked to automatically execute one or more of these subtasks. The datasets for these tasks comprise manually annotated conversations focusing on emotions and triggers for emotion shifts.1 A total of 84 participants engaged in this task, with the most adept systems attaining F1-scores of 0.70, 0.79, and 0.76 for the respective subtasks. This paper summarises the results and findings from 24 teams alongside their system descriptions.
Large Language Models (LLMs) have transformed NLP with their remarkable In-context Learning (ICL) capabilities. Automated assistants based on LLMs are gaining popularity; however, adapting them to novel tasks is still challenging. While colossal models excel in zero-shot performance, their computational demands limit widespread use, and smaller language models struggle without context. This paper investigates whether LLMs can generalize from labeled examples of predefined tasks to novel tasks. Drawing inspiration from biological neurons and the mechanistic interpretation of the Transformer architecture, we explore the potential for information sharing across tasks. We design a cross-task prompting setup with three LLMs and show that LLMs achieve significant performance improvements despite no examples from the target task in the context. Cross-task prompting leads to a remarkable performance boost of 107% for LLaMA-2 7B, 18.6% for LLaMA-2 13B, and 3.2% for GPT 3.5 on average over zero-shot prompting, and performs comparable to standard in-context learning. The effectiveness of generating pseudo-labels for in-task examples is demonstrated, and our analyses reveal a strong correlation between the effect of cross-task examples and model activation similarities in source and target input tokens. This paper offers a first-of-its-kind exploration of LLMs’ ability to solve novel tasks based on contextual signals from different task examples.
Counterspeech, defined as a response to mitigate online hate speech, is increasingly used as a non-censorial solution. The effectiveness of addressing hate speech involves dispelling the stereotypes, prejudices, and biases often subtly implied in brief, single-sentence statements or abuses. These expressions challenge language models, especially in seq2seq tasks, as model performance typically excels with longer contexts. Our study introduces CoARL, a novel framework enhancing counterspeech generation by modeling the pragmatic implications underlying social biases in hateful statements. The first two phases of CoARL involve sequential multi-instruction tuning, teaching the model to understand intents, reactions, and harms of offensive statements, and then learning task-specific low-rank adapter weights for generating intent-conditioned counterspeech. The final phase uses reinforcement learning to fine-tune outputs for effectiveness and nontoxicity. CoARL outperforms existing benchmarks in intent-conditioned counterspeech generation, showing an average improvement of ∼3 points in intent-conformity and ∼4 points in argument-quality metrics. Extensive human evaluation supports CoARL’s efficacy in generating superior and more context-appropriate responses compared to existing systems, including prominent LLMs like ChatGPT.
Memes are a powerful tool for communication over social media. Their affinity for evolving across politics, history, and sociocultural phenomena renders them an ideal vehicle for communication. To comprehend the subtle message conveyed within a meme, one must understand the relevant background that facilitates its holistic assimilation. Besides digital archiving of memes and their metadata by a few websites like knowyourmeme.com, currently, there is no efficient way to deduce a meme’s context dynamically. In this work, we propose a novel task, MEMEX - given a meme and a related document, the aim is to mine the context that succinctly explains the background of the meme. At first, we develop MCC (Meme Context Corpus), a novel dataset for MEMEX. Further, to benchmark MCC, we propose MIME (MultImodal Meme Explainer), a multimodal neural framework that uses external knowledge-enriched meme representation and a multi-level approach to capture the cross-modal semantic dependencies between the meme and the context. MIME surpasses several unimodal and multimodal systems and yields an absolute improvement of 4% F1-score over the best baseline. Lastly, we conduct detailed analyses of MIME’s performance, highlighting the aspects that could lead to optimal modeling of cross-modal contextual associations.
Counterspeech has been demonstrated to be an efficacious approach for combating hate speech. While various conventional and controlled approaches have been studied in recent years to generate counterspeech, a counterspeech with a certain intent may not be sufficient in every scenario. Due to the complex and multifaceted nature of hate speech, utilizing multiple forms of counter-narratives with varying intents may be advantageous in different circumstances. In this paper, we explore intent-conditioned counterspeech generation. At first, we develop IntentCONAN, a diversified intent-specific counterspeech dataset with 6831 counterspeeches conditioned on five intents, i.e., informative, denouncing, question, positive, and humour. Subsequently, we propose QUARC, a two-stage framework for intent-conditioned counterspeech generation. QUARC leverages vector-quantized representations learned for each intent category along with PerFuMe, a novel fusion module to incorporate intent-specific information into the model. Our evaluation demonstrates that QUARC outperforms several baselines by an average of ~10% across evaluation metrics. An extensive human evaluation supplements our hypothesis of better and more appropriate responses than comparative systems.
In-context learning (ICL) unfolds as large language models become capable of inferring test labels conditioned on a few labeled samples without any gradient update. ICL-enabled large language models provide a promising step forward toward bypassing recurrent annotation costs in a low-resource setting. Yet, only a handful of past studies have explored ICL in a cross-lingual setting, in which the need for transferring label-knowledge from a high-resource language to a low-resource one is immensely crucial. To bridge the gap, we provide the first in-depth analysis of ICL for cross-lingual text classification. We find that the prevalent mode of selecting random input-label pairs to construct the prompt-context is severely limited in the case of cross-lingual ICL, primarily due to the lack of alignment in the input as well as the output spaces. To mitigate this, we propose a novel prompt construction strategy — Cross-lingual In-context Source Target Alignment (X-InSTA). With an injected coherence in the semantics of the input examples and a task-based alignment across the source and target languages, X-InSTA is able to outperform random prompt selection by a large margin across three different tasks using 44 different cross-lingual pairs.
Text summarization models are evaluated in terms of their accuracy and quality using various measures such as ROUGE, BLEU, METEOR, BERTScore, PYRAMID, readability, and several other recently proposed ones. The central objective of all accuracy measures is to evaluate the model’s ability to capture saliency accurately. Since saliency is subjective w.r.t the readers’ preferences, there cannot be a fit-all summary for a given document. This means that in many use-cases, summarization models need to be personalized w.r.t user-profiles. However, to our knowledge, there is no measure to evaluate the degree-of-personalization of a summarization model. In this paper, we first establish that existing accuracy measures cannot evaluate the degree of personalization of any summarization model, and then propose a novel measure, called EGISES, for automatically computing the same. Using the PENS dataset released by Microsoft Research, we analyze the degree of personalization of ten different state-of-the-art summarization models (both extractive and abstractive), five of which are explicitly trained for personalized summarization, and the remaining are appropriated to exhibit personalization. We conclude by proposing a generalized accuracy measure, called P-Accuracy, for designing accuracy measures that should also take personalization into account and demonstrate the robustness and reliability of the measure through meta-evaluation.
Multi-head self-attention-based Transformers have shown promise in different learning tasks. Albeit these models exhibit significant improvement in understanding short-term and long-term contexts from sequences, encoders of Transformers and their variants fail to preserve layer-wise contextual information. Transformers usually project tokens onto sparse manifolds and fail to preserve mathematical equivalence among the token representations. In this work, we propose TransJect, an encoder model that guarantees a theoretical bound for layer-wise distance preservation between a pair of tokens. We propose a simple alternative to dot-product attention to ensure Lipschitz continuity. This allows TransJect to learn injective mappings to transform token representations to different manifolds with similar topology and preserve Euclidean distance between every pair of tokens in subsequent layers. Evaluations across multiple benchmark short- and long-sequence classification tasks show maximum improvements of 6.8% and 5.9%, respectively, over the variants of Transformers. Additionally, TransJect displays 79% better performance than Transformer on the language modeling task. We further highlight the shortcomings of multi-head self-attention from the statistical physics viewpoint. Although multi-head self-attention was incepted to learn different abstraction levels within the networks, our empirical analyses suggest that different attention heads learn randomly and unorderly. In contrast, TransJect adapts a mixture of experts for regularization; these experts are more orderly and balanced and learn different sparse representations from the input sequences. TransJect exhibits very low entropy and can be efficiently scaled to larger depths.
With the proliferation of social media platforms, users are exposed to vast information, including posts containing misleading claims. However, the pervasive noise inherent in these posts presents a challenge in identifying precise and prominent claims that require verification. Extracting the core assertions from such posts is arduous and time-consuming. We introduce a novel task, called Claim Normalization (aka ClaimNorm) that aims to decompose complex and noisy social media posts into more straightforward and understandable forms, termed normalized claims. We propose CACN , a pioneering approach that leverages chain-of-thought and claim check-worthiness estimation, mimicking human reasoning processes, to comprehend intricate claims. Moreover, we capitalize on large language models’ powerful in-context learning abilities to provide guidance and improve the claim normalization process. To evaluate the effectiveness of our proposed model, we meticulously compile a comprehensive real-world dataset, CLAN, comprising more than 6k instances of social media posts alongside their respective normalized claims. Experimentation demonstrates that CACN outperforms several baselines across various evaluation measures. A rigorous error analysis validates CACN‘s capabilities and pitfalls. We release our dataset and code at https://github.com/LCS2-IIITD/CACN-EMNLP-2023.
Memes can sway people’s opinions over social media as they combine visual and textual information in an easy-to-consume manner. Since memes instantly turn viral, it becomes crucial to infer their intent and potentially associated harmfulness to take timely measures as needed. A common problem associated with meme comprehension lies in detecting the entities referenced and characterizing the role of each of these entities. Here, we aim to understand whether the meme glorifies, vilifies, or victimizes each entity it refers to. To this end, we address the task of role identification of entities in harmful memes, i.e., detecting who is the ‘hero’, the ‘villain’, and the ‘victim’ in the meme, if any. We utilize HVVMemes – a memes dataset on US Politics and Covid-19 memes, released recently as part of the CONSTRAINT@ACL-2022 shared-task. It contains memes, entities referenced, and their associated roles: hero, villain, victim, and other. We further design VECTOR (Visual-semantic role dEteCToR), a robust multi-modal framework for the task, which integrates entity-based contextual information in the multi-modal representation and compare it to several standard unimodal (text-only or image-only) or multi-modal (image+text) models. Our experimental results show that our proposed model achieves an improvement of 4% over the best baseline and 1% over the best competing stand-alone submission from the shared-task. Besides divulging an extensive experimental setup with comparative analyses, we finally highlight the challenges encountered in addressing the complex task of semantic role labeling within memes.
Multi-document Summarization (MDS) characterizes compressing information from multiple source documents to its succinct summary. An ideal summary should encompass all topics and accurately model cross-document relations expounded upon in the source documents. However, existing systems either impose constraints on the length of tokens during the encoding or falter in capturing the intricate cross-document relationships. These limitations impel the systems to produce summaries that are non-factual and unfaithful, thereby imparting an unfair comprehension of the topic to the readers. To counter these limitations and promote the information equivalence between the source document and generated summary, we propose FIBER, a novel encoder-decoder model that uses pre-trained BART to comprehensively analyze linguistic nuances, simplicial complex layer to apprehend inherent properties that transcend pairwise associations and sheaf graph attention to effectively capture the heterophilic properties. We benchmark FIBER with eleven baselines over four widely-used MDS datasets – Multinews, CQASumm, DUC and Opinosis, and show that FIBER achieves consistent performance improvement across all the evaluation metrics (syntactical, semantical and faithfulness). We corroborate these improvements further through qualitative human evaluation.
Large Language Models (LLMs) prompted to generate chain-of-thought (CoT) exhibit impressive reasoning capabilities. Recent attempts at prompt decomposition toward solving complex, multi-step reasoning problems depend on the ability of the LLM to simultaneously decompose and solve the problem. A significant disadvantage is that foundational LLMs are typically not available for fine-tuning, making adaptation computationally prohibitive. We believe (and demonstrate) that problem decomposition and solution generation are distinct capabilites, better addressed in separate modules, than by one monolithic LLM. We introduce DaSLaM, which uses a decomposition generator to decompose complex problems into subproblems that require fewer reasoning steps. These subproblems are answered by a solver. We use a relatively small (13B parameters) LM as the decomposition generator, which we train using policy gradient optimization to interact with a solver LM (regarded as black-box) and guide it through subproblems, thereby rendering our method solver-agnostic. Evaluation on multiple different reasoning datasets reveal that with our method, a 175 billion parameter LM (text-davinci-003) can produce competitive or even better performance, compared to its orders-of-magnitude larger successor, GPT-4. Additionally, we show that DaSLaM is not limited by the solver’s capabilities as a function of scale; e.g., solver LMs with diverse sizes give significant performance improvement with our solver-agnostic decomposition technique. Exhaustive ablation studies evince the superiority of our modular finetuning technique over exorbitantly large decomposer LLMs, based on prompting alone.
Understanding emotions during conversation is a fundamental aspect of human communication, driving NLP research for Emotion Recognition in Conversation (ERC). While considerable research has focused on discerning emotions of individual speakers in monolingual dialogues, understanding the emotional dynamics in code-mixed conversations has received relatively less attention. This motivates our undertaking of ERC for code-mixed conversations in this study. Recognizing that emotional intelligence encompasses a comprehension of worldly knowledge, we propose an innovative approach that integrates commonsense information with dialogue context to facilitate a deeper understanding of emotions. To achieve this, we devise an efficient pipeline that extracts relevant commonsense from existing knowledge graphs based on the code-mixed input. Subsequently, we develop an advanced fusion technique that seamlessly combines the acquired commonsense information with the dialogue representation obtained from a dedicated dialogue understanding module. Our comprehensive experimentation showcases the substantial performance improvement obtained through the systematic incorporation of commonsense in ERC. Both quantitative assessments and qualitative analyses further corroborate the validity of our hypothesis, reaffirming the pivotal role of commonsense integration in enhancing ERC.
The widespread diffusion of medical and political claims in the wake of COVID-19 has led to a voluminous rise in misinformation and fake news. The current vogue is to employ manual fact-checkers to efficiently classify and verify such data to combat this avalanche of claim-ridden misinformation. However, the rate of information dissemination is such that it vastly outpaces the fact-checkers’ strength. Therefore, to aid manual fact-checkers in eliminating the superfluous content, it becomes imperative to automatically identify and extract the snippets of claim-worthy (mis)information present in a post. In this work, we introduce the novel task of Claim Span Identification (CSI). We propose CURT, a large-scale Twitter corpus with token-level claim spans on more than 7.5k tweets. Furthermore, along with the standard token classification baselines, we benchmark our dataset with DABERTa, an adapter-based variation of RoBERTa. The experimental results attest that DABERTa outperforms the baseline systems across several evaluation metrics, improving by about 1.5 points. We also report detailed error analysis to validate the model’s performance along with the ablation studies. Lastly, we release our comprehensive span annotation guidelines for public use.
We present the findings of the shared task at the CONSTRAINT 2022 Workshop: Hero, Villain, and Victim: Dissecting harmful memes for Semantic role labeling of entities. The task aims to delve deeper into the domain of meme comprehension by deciphering the connotations behind the entities present in a meme. In more nuanced terms, the shared task focuses on determining the victimizing, glorifying, and vilifying intentions embedded in meme entities to explicate their connotations. To this end, we curate HVVMemes, a novel meme dataset of about 7000 memes spanning the domains of COVID-19 and US Politics, each containing entities and their associated roles: hero, villain, victim, or none. The shared task attracted 105 participants, but eventually only 6 submissions were made. Most of the successful submissions relied on fine-tuning pre-trained language and multimodal models along with ensembles. The best submission achieved an F1-score of 58.67.
During the COVID-19 pandemic, the spread of misinformation on online social media has grown exponentially. Unverified bogus claims on these platforms regularly mislead people, leading them to believe in half-baked truths. The current vogue is to employ manual fact-checkers to verify claims to combat this avalanche of misinformation. However, establishing such claims’ veracity is becoming increasingly challenging, partly due to the plethora of information available, which is difficult to process manually. Thus, it becomes imperative to verify claims automatically without human interventions. To cope up with this issue, we propose an automated claim verification solution encompassing two steps – document retrieval and veracity prediction. For the retrieval module, we employ a hybrid search-based system with BM25 as a base retriever and experiment with recent state-of-the-art transformer-based models for re-ranking. Furthermore, we use a BART-based textual entailment architecture to authenticate the retrieved documents in the later step. We report experimental findings, demonstrating that our retrieval module outperforms the best baseline system by 10.32 NDCG@100 points. We escort a demonstration to assess the efficacy and impact of our suggested solution. As a byproduct of this study, we present an open-source, easily deployable, and user-friendly Python API that the community can adopt.
Recent years have witnessed the proliferation of offensive content online such as fake news, propaganda, misinformation, and disinformation. While initially this was mostly about textual content, over time images and videos gained popularity, as they are much easier to consume, attract more attention, and spread further than text. As a result, researchers started leveraging different modalities and combinations thereof to tackle online multimodal offensive content. In this study, we offer a survey on the state-of-the-art on multimodal disinformation detection covering various combinations of modalities: text, images, speech, video, social media network structure, and temporal information. Moreover, while some studies focused on factuality, others investigated how harmful the content is. While these two components in the definition of disinformation – (i) factuality, and (ii) harmfulness –, are equally important, they are typically studied in isolation. Thus, we argue for the need to tackle disinformation detection by taking into account multiple modalities as well as both factuality and harmfulness, in the same framework. Finally, we discuss current challenges and future research directions.
Indirect speech such as sarcasm achieves a constellation of discourse goals in human communication. While the indirectness of figurative language warrants speakers to achieve certain pragmatic goals, it is challenging for AI agents to comprehend such idiosyncrasies of human communication. Though sarcasm identification has been a well-explored topic in dialogue analysis, for conversational systems to truly grasp a conversation’s innate meaning and generate appropriate responses, simply detecting sarcasm is not enough; it is vital to explain its underlying sarcastic connotation to capture its true essence. In this work, we study the discourse structure of sarcastic conversations and propose a novel task – Sarcasm Explanation in Dialogue (SED). Set in a multimodal and code-mixed setting, the task aims to generate natural language explanations of satirical conversations. To this end, we curate WITS, a new dataset to support our task. We propose MAF (Modality Aware Fusion), a multimodal context-aware attention and global information fusion module to capture multimodality and use it to benchmark WITS. The proposed attention module surpasses the traditional multimodal fusion baselines and reports the best performance on almost all metrics. Lastly, we carry out detailed analysis both quantitatively and qualitatively.
Identifying argument components from unstructured texts and predicting the relationships expressed among them are two primary steps of argument mining. The intrinsic complexity of these tasks demands powerful learning models. While pretrained Transformer-based Language Models (LM) have been shown to provide state-of-the-art results over different NLP tasks, the scarcity of manually annotated data and the highly domain-dependent nature of argumentation restrict the capabilities of such models. In this work, we propose a novel transfer learning strategy to overcome these challenges. We utilize argumentation-rich social discussions from the ChangeMyView subreddit as a source of unsupervised, argumentative discourse-aware knowledge by finetuning pretrained LMs on a selectively masked language modeling task. Furthermore, we introduce a novel prompt-based strategy for inter-component relation prediction that compliments our proposed finetuning method while leveraging on the discourse context. Exhaustive experiments show the generalization capability of our method on these two tasks over within-domain as well as out-of-domain datasets, outperforming several existing and employed strong baselines.
Existing self-supervised learning strategies are constrained to either a limited set of objectives or generic downstream tasks that predominantly target uni-modal applications. This has isolated progress for imperative multi-modal applications that are diverse in terms of complexity and domain-affinity, such as meme analysis. Here, we introduce two self-supervised pre-training methods, namely Ext-PIE-Net and MM-SimCLR that (i) employ off-the-shelf multi-modal hate-speech data during pre-training and (ii) perform self-supervised learning by incorporating multiple specialized pretext tasks, effectively catering to the required complex multi-modal representation learning for meme analysis. We experiment with different self-supervision strategies, including potential variants that could help learn rich cross-modality representations and evaluate using popular linear probing on the Hateful Memes task. The proposed solutions strongly compete with the fully supervised baseline via label-efficient training while distinctly outperforming them on all three tasks of the Memotion challenge with 0.18%, 23.64%, and 0.93% performance gain, respectively. Further, we demonstrate the generalizability of the proposed solutions by reporting competitive performance on the HarMeme task. Finally, we empirically establish the quality of the learned representations by analyzing task-specific learning, using fewer labeled training samples, and arguing that the complexity of the self-supervision strategy and downstream task at hand are correlated. Our efforts highlight the requirement of better multi-modal self-supervision methods involving specialized pretext tasks for efficient fine-tuning and generalizable performance.
Internet memes have emerged as an increasingly popular means of communication on the web. Although memes are typically intended to elicit humour, they have been increasingly used to spread hatred, trolling, and cyberbullying, as well as to target specific individuals, communities, or society on political, socio-cultural, and psychological grounds. While previous work has focused on detecting harmful, hateful, and offensive memes in general, identifying whom these memes attack (i.e., the ‘victims’) remains a challenging and underexplored area. We attempt to address this problem in this paper. To this end, we create a dataset in which we annotate each meme with its victim(s) such as the name of the targeted person(s), organization(s), and community(ies). We then propose DISARM (Detecting vIctimS targeted by hARmful Memes), a framework that uses named-entity recognition and person identification to detect all entities a meme is referring to, and then, incorporates a novel contextualized multimodal deep neural network to classify whether the meme intends to harm these entities. We perform several systematic experiments on three different test sets, corresponding to entities that are (i) all seen while training, (ii) not seen as a harmful target while training, and (iii) not seen at all while training. The evaluation shows that DISARM significantly outperforms 10 unimodal and multimodal systems. Finally, we demonstrate that DISARM is interpretable and comparatively more generalizable and that it can reduce the relative error rate of harmful target identification by up to 9 % absolute over multimodal baseline systems.
Code-mixed text infused with low resource language has always been a challenge for natural language understanding models. A significant problem while understanding such texts is the correlation between the syntactic and semantic arrangement of words. The phonemes of each character in a word dictates the spelling representation of a term in low resource language. However, there is no universal protocol or alphabet mapping for code-mixing. In this paper, we highlight the impact of spelling variations in code-mixed data for training natural language understanding models. We emphasize the impact of using phonetics to neutralize this variation in spelling across different usage of a word with the same semantics. The proposed approach is a computationally inexpensive technique and improves the performances of state-of-the-art models for three dialog system tasks viz. intent classification, slot-filling, and response generation. We propose a data pipeline for normalizing spelling variations irrespective of language.
Internet memes have become powerful means to transmit political, psychological, and socio-cultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abuse. Detecting such memes is challenging as they can be highly satirical and cryptic. Moreover, while previous work has focused on specific aspects of memes such as hate speech and propaganda, there has been little work on harm in general. Here, we aim to bridge this gap. In particular, we focus on two tasks: (i)detecting harmful memes, and (ii) identifying the social entities they target. We further extend the recently released HarMeme dataset, which covered COVID-19, with additional memes and a new topic: US politics. To solve these tasks, we propose MOMENTA (MultimOdal framework for detecting harmful MemEs aNd Their tArgets), a novel multimodal deep neural network that uses global and local perspectives to detect harmful memes. MOMENTA systematically analyzes the local and the global perspective of the input meme (in both modalities) and relates it to the background context. MOMENTA is interpretable and generalizable, and our experiments show that it outperforms several strong rivaling approaches.
The conceptualization of a claim lies at the core of argument mining. The segregation of claims is complex, owing to the divergence in textual syntax and context across different distributions. Another pressing issue is the unavailability of labeled unstructured text for experimentation. In this paper, we propose LESA, a framework which aims at advancing headfirst into expunging the former issue by assembling a source-independent generalized model that captures syntactic features through part-of-speech and dependency embeddings, as well as contextual features through a fine-tuned language model. We resolve the latter issue by annotating a Twitter dataset which aims at providing a testing ground on a large unstructured dataset. Experimental results show that LESA improves upon the state-of-the-art performance across six benchmark claim datasets by an average of 3 claim-F1 points for in-domain experiments and by 2 claim-F1 points for general-domain experiments. On our dataset too, LESA outperforms existing baselines by 1 claim-F1 point on the in-domain experiments and 2 claim-F1 points on the general-domain experiments. We also release comprehensive data annotation guidelines compiled during the annotation phase (which was missing in the current literature).
Word embeddings are the standard model for semantic and syntactic representations of words. Unfortunately, these models have been shown to exhibit undesirable word associations resulting from gender, racial, and religious biases. Existing post-processing methods for debiasing word embeddings are unable to mitigate gender bias hidden in the spatial arrangement of word vectors. In this paper, we propose RAN-Debias, a novel gender debiasing methodology that not only eliminates the bias present in a word vector but also alters the spatial distribution of its neighboring vectors, achieving a bias-free setting while maintaining minimal semantic offset. We also propose a new bias evaluation metric, Gender-based Illicit Proximity Estimate (GIPE), which measures the extent of undue proximity in word vectors resulting from the presence of gender-based predilections. Experiments based on a suite of evaluation metrics show that RAN-Debias significantly outperforms the state-of-the-art in reducing proximity bias (GIPE) by at least 42.02%. It also reduces direct bias, adding minimal semantic disturbance, and achieves the best performance in a downstream application task (coreference resolution).
Multi-document summarization (MDS) is the task of reflecting key points from any set of documents into a concise text paragraph. In the past, it has been used to aggregate news, tweets, product reviews, etc. from various sources. Owing to no standard definition of the task, we encounter a plethora of datasets with varying levels of overlap and conflict between participating documents. There is also no standard regarding what constitutes summary information in MDS. Adding to the challenge is the fact that new systems report results on a set of chosen datasets, which might not correlate with their performance on the other datasets. In this paper, we study this heterogeneous task with the help of a few widely used MDS corpora and a suite of state-of-theart models. We make an attempt to quantify the quality of summarization corpus and prescribe a list of points to consider while proposing a new MDS corpus. Next, we analyze the reason behind the absence of an MDS system which achieves superior performance across all corpora. We then observe the extent to which system metrics are influenced, and bias is propagated due to corpus properties. The scripts to reproduce the experiments in this work are available at https://github.com/LCS2-IIITD/summarization_bias.git
Information on social media comprises of various modalities such as textual, visual and audio. NLP and Computer Vision communities often leverage only one prominent modality in isolation to study social media. However, computational processing of Internet memes needs a hybrid approach. The growing ubiquity of Internet memes on social media platforms such as Facebook, Instagram, and Twitter further suggests that we can not ignore such multimodal content anymore. To the best of our knowledge, there is not much attention towards meme emotion analysis. The objective of this proposal is to bring the attention of the research community towards the automatic processing of Internet memes. The task Memotion analysis released approx 10K annotated memes- with human annotated labels namely sentiment(positive, negative, neutral), type of emotion(sarcastic,funny,offensive, motivation) and their corresponding intensity. The challenge consisted of three subtasks: sentiment (positive, negative, and neutral) analysis of memes,overall emotion (humor, sarcasm, offensive, and motivational) classification of memes, and classifying intensity of meme emotion. The best performances achieved were F1 (macro average) scores of 0.35, 0.51 and 0.32, respectively for each of the three subtasks.
In this paper, we present the results of the SemEval-2020 Task 9 on Sentiment Analysis of Code-Mixed Tweets (SentiMix 2020). We also release and describe our Hinglish (Hindi-English)and Spanglish (Spanish-English) corpora annotated with word-level language identification and sentence-level sentiment labels. These corpora are comprised of 20K and 19K examples, respectively. The sentiment labels are - Positive, Negative, and Neutral. SentiMix attracted 89 submissions in total including 61 teams that participated in the Hinglish contest and 28 submitted systems to the Spanglish competition. The best performance achieved was 75.0% F1 score for Hinglish and 80.6% F1 for Spanglish. We observe that BERT-like models and ensemble methods are the most common and successful approaches among the participants.
In this paper, we present a news bias prediction system, which we developed as part of a SemEval 2019 task. We developed an XGBoost based system which uses character and word level n-gram features represented using TF-IDF, count vector based correlation matrix, and predicts if an input news article is a hyperpartisan news article. Our model was able to achieve a precision of 68.3% on the test set provided by the contest organizers. We also run our model on the BuzzFeed corpus and find XGBoost with simple character level N-Gram embeddings to be performing well with an accuracy of around 96%.