Tao Meng


2021

pdf bib
GEMNET: Effective Gated Gazetteer Representations for Recognizing Complex Entities in Low-context Input
Tao Meng | Anjie Fang | Oleg Rokhlenko | Shervin Malmasi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Named Entity Recognition (NER) remains difficult in real-world settings; current challenges include short texts (low context), emerging entities, and complex entities (e.g. movie names). Gazetteer features can help, but results have been mixed due to challenges with adding extra features, and a lack of realistic evaluation data. It has been shown that including gazetteer features can cause models to overuse or underuse them, leading to poor generalization. We propose GEMNET, a novel approach for gazetteer knowledge integration, including (1) a flexible Contextual Gazetteer Representation (CGR) encoder that can be fused with any word-level model; and (2) a Mixture-of- Experts gating network that overcomes the feature overuse issue by learning to conditionally combine the context and gazetteer features, instead of assigning them fixed weights. To comprehensively evaluate our approaches, we create 3 large NER datasets (24M tokens) reflecting current challenges. In an uncased setting, our methods show large gains (up to +49% F1) in recognizing difficult entities compared to existing baselines. On standard benchmarks, we achieve a new uncased SOTA on CoNLL03 and WNUT17.

2020

pdf bib
Mitigating Gender Bias Amplification in Distribution by Posterior Regularization
Shengyu Jia | Tao Meng | Jieyu Zhao | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Advanced machine learning techniques have boosted the performance of natural language processing. Nevertheless, recent studies, e.g., (CITATION) show that these techniques inadvertently capture the societal bias hidden in the corpus and further amplify it. However, their analysis is conducted only on models’ top predictions. In this paper, we investigate the gender bias amplification issue from the distribution perspective and demonstrate that the bias is amplified in the view of predicted probability distribution over labels. We further propose a bias mitigation approach based on posterior regularization. With little performance loss, our method can almost remove the bias amplification in the distribution. Our study sheds the light on understanding the bias amplification.

pdf bib
On the Robustness of Language Encoders against Grammatical Errors
Fan Yin | Quanyu Long | Tao Meng | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We conduct a thorough study to diagnose the behaviors of pre-trained language encoders (ELMo, BERT, and RoBERTa) when confronted with natural grammatical errors. Specifically, we collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data. We use this approach to facilitate debugging models on downstream applications. Results confirm that the performance of all tested models is affected but the degree of impact varies. To interpret model behaviors, we further design a linguistic acceptability task to reveal their abilities in identifying ungrammatical sentences and the position of errors. We find that fixed contextual encoders with a simple classifier trained on the prediction of sentence correctness are able to locate error positions. We also design a cloze test for BERT and discover that BERT captures the interaction between errors and specific tokens in context. Our results shed light on understanding the robustness and behaviors of language encoders against grammatical errors.

pdf bib
SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics
Da Yin | Tao Meng | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We propose SentiBERT, a variant of BERT that effectively captures compositional sentiment semantics. The model incorporates contextualized representation with binary constituency parse tree to capture semantic composition. Comprehensive experiments demonstrate that SentiBERT achieves competitive performance on phrase-level sentiment classification. We further demonstrate that the sentiment composition learned from the phrase-level annotations on SST can be transferred to other sentiment analysis tasks as well as related tasks, such as emotion classification tasks. Moreover, we conduct ablation studies and design visualization methods to understand SentiBERT. We show that SentiBERT is better than baseline approaches in capturing negation and the contrastive relation and model the compositional sentiment semantics.

2019

pdf bib
Target Language-Aware Constrained Inference for Cross-lingual Dependency Parsing
Tao Meng | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Prior work on cross-lingual dependency parsing often focuses on capturing the commonalities between source and target languages and overlook the potential to leverage the linguistic properties of the target languages to facilitate the transfer. In this paper, we show that weak supervisions of linguistic knowledge for the target languages can improve a cross-lingual graph-based dependency parser substantially. Specifically, we explore several types of corpus linguistic statistics and compile them into corpus-statistics constraints to facilitate the inference procedure. We propose new algorithms that adapt two techniques, Lagrangian relaxation and posterior regularization, to conduct inference with corpus-statistics constraints. Experiments show that the Lagrangian relaxation and posterior regularization techniques improve the performances on 15 and 17 out of 19 target languages, respectively. The improvements are especially large for the target languages that have different word order features from the source language.