Teven Le Scao


2023

pdf bib
Crosslingual Generalization through Multitask Finetuning
Niklas Muennighoff | Thomas Wang | Lintang Sutawika | Adam Roberts | Stella Biderman | Teven Le Scao | M Saiful Bari | Sheng Shen | Zheng Xin Yong | Hailey Schoelkopf | Xiangru Tang | Dragomir Radev | Alham Fikri Aji | Khalid Almubarak | Samuel Albanie | Zaid Alyafeai | Albert Webson | Edward Raff | Colin Raffel
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting, but so far explorations of MTF have focused on English data and models. We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0. We find finetuning large multilingual language models on English tasks with English prompts allows for task genrealization to non-English languages that appear only in the pretraining corpus. Finetuning on multilingual tasks with English prompts further improves performance on English and non-English tasks leading to various state-of-the-art zero-shot results. We also investigate finetuning on multilingual tasks with prompts that have been machine-translated from English to match the language of each dataset. We find training on these machine-translated prompts leads to better performance on human-written prompts in the respective languages. Surprisingly, we find models are capable of zero-shot generalization to tasks in languages they have never intentionally seen. We conjecture that the models are learning higher-level capabilities that are both task- and language-agnostic. In addition, we introduce xP3, a composite of supervised datasets in 46 languages with English and machine-translated prompts. Our code, datasets and models are freely available at https://github.com/bigscience-workshop/xmtf.

pdf bib
Joint Representations of Text and Knowledge Graphs for Retrieval and Evaluation
Teven Le Scao | Claire Gardent
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)

2022

pdf bib
What Language Model to Train if You Have One Million GPU Hours?
Teven Le Scao | Thomas Wang | Daniel Hesslow | Stas Bekman | M Saiful Bari | Stella Biderman | Hady Elsahar | Niklas Muennighoff | Jason Phang | Ofir Press | Colin Raffel | Victor Sanh | Sheng Shen | Lintang Sutawika | Jaesung Tae | Zheng Xin Yong | Julien Launay | Iz Beltagy
Findings of the Association for Computational Linguistics: EMNLP 2022

The crystallization of modeling methods around the Transformer architecture has been a boon for practitioners. Simple, well-motivated architectural variations can transfer across tasks and scale, increasing the impact of modeling research. However, with the emergence of state-of-the-art 100B+ parameters models, large language models are increasingly expensive to accurately design and train. Notably, it can be difficult to evaluate how modeling decisions may impact emergent capabilities, given that these capabilities arise mainly from sheer scale alone.In the process of building BLOOM–the Big Science Large Open-science Open-access Multilingual language model–our goal is to identify an architecture and training setup that makes the best use of our 1,000,000 A100-GPU-hours budget.Specifically, we perform an ablation study at the billion-parameter scale comparing different modeling practices and their impact on zero-shot generalization.In addition, we study the impact of various popular pre-training corpora on zero-shot generalization. We also study the performance of a multilingual model and how it compares to the English-only one. Finally, we consider the scaling behaviour of Transformers to choose the target model size, shape, and training setup. All our models and code are open-sourced at https://huggingface.co/bigscience.

2021

pdf bib
Datasets: A Community Library for Natural Language Processing
Quentin Lhoest | Albert Villanova del Moral | Yacine Jernite | Abhishek Thakur | Patrick von Platen | Suraj Patil | Julien Chaumond | Mariama Drame | Julien Plu | Lewis Tunstall | Joe Davison | Mario Šaško | Gunjan Chhablani | Bhavitvya Malik | Simon Brandeis | Teven Le Scao | Victor Sanh | Canwen Xu | Nicolas Patry | Angelina McMillan-Major | Philipp Schmid | Sylvain Gugger | Clément Delangue | Théo Matussière | Lysandre Debut | Stas Bekman | Pierric Cistac | Thibault Goehringer | Victor Mustar | François Lagunas | Alexander Rush | Thomas Wolf
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.

pdf bib
How many data points is a prompt worth?
Teven Le Scao | Alexander Rush
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

When fine-tuning pretrained models for classification, researchers either use a generic model head or a task-specific prompt for prediction. Proponents of prompting have argued that prompts provide a method for injecting task-specific guidance, which is beneficial in low-data regimes. We aim to quantify this benefit through rigorous testing of prompts in a fair setting: comparing prompted and head-based fine-tuning in equal conditions across many tasks and data sizes. By controlling for many sources of advantage, we find that prompting does indeed provide a benefit, and that this benefit can be quantified per task. Results show that prompting is often worth 100s of data points on average across classification tasks.

2020

pdf bib
Transformers: State-of-the-Art Natural Language Processing
Thomas Wolf | Lysandre Debut | Victor Sanh | Julien Chaumond | Clement Delangue | Anthony Moi | Pierric Cistac | Tim Rault | Remi Louf | Morgan Funtowicz | Joe Davison | Sam Shleifer | Patrick von Platen | Clara Ma | Yacine Jernite | Julien Plu | Canwen Xu | Teven Le Scao | Sylvain Gugger | Mariama Drame | Quentin Lhoest | Alexander Rush
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. Transformers is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. Transformers is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at https://github.com/huggingface/transformers.