Toru Hirano


2016

pdf bib
Analyzing Post-dialogue Comments by Speakers – How Do Humans Personalize Their Utterances in Dialogue? –
Toru Hirano | Ryuichiro Higashinaka | Yoshihiro Matsuo
Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf bib
Towards an Entertaining Natural Language Generation System: Linguistic Peculiarities of Japanese Fictional Characters
Chiaki Miyazaki | Toru Hirano | Ryuichiro Higashinaka | Yoshihiro Matsuo
Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue

2015

pdf bib
Discourse Relation Recognition by Comparing Various Units of Sentence Expression with Recursive Neural Network
Atsushi Otsuka | Toru Hirano | Chiaki Miyazaki | Ryo Masumura | Ryuichiro Higashinaka | Toshiro Makino | Yoshihiro Matsuo
Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation

pdf bib
Automatic conversion of sentence-end expressions for utterance characterization of dialogue systems
Chiaki Miyazaki | Toru Hirano | Ryuichiro Higashinaka | Toshiro Makino | Yoshihiro Matsuo
Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation

2014

pdf bib
Towards an open-domain conversational system fully based on natural language processing
Ryuichiro Higashinaka | Kenji Imamura | Toyomi Meguro | Chiaki Miyazaki | Nozomi Kobayashi | Hiroaki Sugiyama | Toru Hirano | Toshiro Makino | Yoshihiro Matsuo
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2010

pdf bib
Recognizing Relation Expression between Named Entities based on Inherent and Context-dependent Features of Relational words
Toru Hirano | Hisako Asano | Yoshihiro Matsuo | Genichiro Kikui
Coling 2010: Posters

2007

pdf bib
Detecting Semantic Relations between Named Entities in Text Using Contextual Features
Toru Hirano | Yoshihiro Matsuo | Genichiro Kikui
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions

2006

pdf bib
Augmenting a Semantic Verb Lexicon with a Large Scale Collection of Example Sentences
Kentaro Inui | Toru Hirano | Ryu Iida | Atsushi Fujita | Yuji Matsumoto
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)

One of the crucial issues in semantic parsing is how to reduce costs of collecting a sufficiently large amount of labeled data. This paper presents a new approach to cost-saving annotation of example sentences with predicate-argument structure information, taking Japanese as a target language. In this scheme, a large collection of unlabeled examples are first clustered and selectively sampled, and for each sampled cluster, only one representative example is given a label by a human annotator. The advantages of this approach are empirically supported by the results of our preliminary experiments, where we use an existing similarity function and naive sampling strategy.