Urmish Thakker


2022

pdf bib
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts
Stephen Bach | Victor Sanh | Zheng Xin Yong | Albert Webson | Colin Raffel | Nihal V. Nayak | Abheesht Sharma | Taewoon Kim | M Saiful Bari | Thibault Fevry | Zaid Alyafeai | Manan Dey | Andrea Santilli | Zhiqing Sun | Srulik Ben-david | Canwen Xu | Gunjan Chhablani | Han Wang | Jason Fries | Maged Al-shaibani | Shanya Sharma | Urmish Thakker | Khalid Almubarak | Xiangru Tang | Dragomir Radev | Mike Tian-jian Jiang | Alexander Rush
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

PromptSource is a system for creating, sharing, and using natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. Using prompts to train and query language models is an emerging area in NLP that requires new tools that let users develop and refine these prompts collaboratively. PromptSource addresses the emergent challenges in this new setting with (1) a templating language for defining data-linked prompts, (2) an interface that lets users quickly iterate on prompt development by observing outputs of their prompts on many examples, and (3) a community-driven set of guidelines for contributing new prompts to a common pool. Over 2,000 prompts for roughly 170 datasets are already available in PromptSource. PromptSource is available at https://github.com/bigscience-workshop/promptsource.

2020

pdf bib
Rank and run-time aware compression of NLP Applications
Urmish Thakker | Jesse Beu | Dibakar Gope | Ganesh Dasika | Matthew Mattina
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing

Sequence model based NLP applications canbe large. Yet, many applications that benefit from them run on small devices with very limited compute and storage capabilities, while still having run-time constraints. As a result, there is a need for a compression technique that can achieve significant compression without negatively impacting inference run-time and task accuracy. This paper proposes a new compression technique called Hybrid Matrix Factorization (HMF) that achieves this dual objective. HMF improves low-rank matrix factorization (LMF) techniques by doubling the rank of the matrix using an intelligent hybrid-structure leading to better accuracy than LMF. Further, by preserving dense matrices, it leads to faster inference run-timethan pruning or structure matrix based compression technique. We evaluate the impact of this technique on 5 NLP benchmarks across multiple tasks (Translation, Intent Detection,Language Modeling) and show that for similar accuracy values and compression factors, HMF can achieve more than 2.32x faster inference run-time than pruning and 16.77% better accuracy than LMF.