Wei Tang


2024

pdf bib
HW-TSC at TextGraphs-17 Shared Task: Enhancing Inference Capabilities of LLMs with Knowledge Graphs
Wei Tang | Xiaosong Qiao | Xiaofeng Zhao | Min Zhang | Chang Su | Yuang Li | Yinglu Li | Yilun Liu | Feiyu Yao | Shimin Tao | Hao Yang | He Xianghui
Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing

In this paper, we present an effective method for TextGraphs-17 Shared Task. This task requires selecting an entity from the candidate entities that is relevant to the given question and answer. The selection process is aided by utilizing the shortest path graph in the knowledge graph, connecting entities in the query to the candidate entity. This task aims to explore how to enhance LLMs output with KGs, although current LLMs have certain logical reasoning capabilities, they may not be certain about their own outputs, and the answers they produce may be correct by chance through incorrect paths. In this case, we have introduced a LLM prompt design strategy based on self-ranking and emotion. Specifically, we let the large model score its own answer choices to reflect its confidence in the answer. Additionally, we add emotional incentives to the prompts to encourage the model to carefully examine the questions. Our submissions was conducted under zero-resource setting, and we achieved the second place in the task with an F1-score of 0.8321.

pdf bib
A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential
Wei Tang | Yixin Cao | Jiahao Ying | Bo Wang | Yuyue Zhao | Yong Liao | Pengyuan Zhou
Findings of the Association for Computational Linguistics ACL 2024

Retrieval-Augmented Generation (RAG) is an effective solution to supplement necessary knowledge to large language models (LLMs). Targeting its bottleneck of retriever performance, “generate-then-read” pipeline is proposed to replace the retrieval stage with generation from the LLM itself. Although promising, this research direction is underexplored and still cannot work in the scenario when source knowledge is given. In this paper, we formalize a general “A + B” framework with varying combinations of foundation models and types for systematic investigation. We explore the efficacy of the base and chat versions of LLMs and found their different functionalities suitable for generator A and reader B, respectively. Their combinations consistently outperform single models, especially in complex scenarios. Furthermore, we extend the application of the “A + B” framework to scenarios involving source documents through continuous learning, enabling the direct integration of external knowledge into LLMs. This approach not only facilitates effective acquisition of new knowledge but also addresses the challenges of safety and helpfulness post-adaptation. The paper underscores the versatility of the “A + B” framework, demonstrating its potential to enhance the practical application of LLMs across various domains.

2023

pdf bib
Deeply Coupled Cross-Modal Prompt Learning
Xuejing Liu | Wei Tang | Jinghui Lu | Rui Zhao | Zhaojun Guo | Fei Tan
Findings of the Association for Computational Linguistics: ACL 2023

Recent advancements in multimodal foundation models (e.g., CLIP) have excelled in zero-shot generalization. Prompt tuning involved in the knowledge transfer from foundation models to downstream tasks has gained significant attention recently. Existing prompt-tuning methods in cross-modal learning, however, either solely focus on language branch, or learn vision-language interaction in a shallow mechanism. In this context, we propose a Deeply coupled Cross-modal Prompt learning (DCP) method based on CLIP. DCP flexibly accommodates the interplay between vision and language with a Cross-Modal Prompt Attention (CMPA) mechanism, which enables the mutual exchange of respective representation through a well-connected multi-head attention progressively and strongly. We then conduct comprehensive few-shot learning experiments on 11 image classification datasets and analyze the robustness to domain shift as well. Thorough experimental analysis evidently demonstrates the superb few-shot generalization and compelling domain adaption capacity of a well-executed DCP.

2022

pdf bib
UniRel: Unified Representation and Interaction for Joint Relational Triple Extraction
Wei Tang | Benfeng Xu | Yuyue Zhao | Zhendong Mao | Yifeng Liu | Yong Liao | Haiyong Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Relational triple extraction is challenging for its difficulty in capturing rich correlations between entities and relations. Existing works suffer from 1) heterogeneous representations of entities and relations, and 2) heterogeneous modeling of entity-entity interactions and entity-relation interactions. Therefore, the rich correlations are not fully exploited by existing works. In this paper, we propose UniRel to address these challenges. Specifically, we unify the representations of entities and relations by jointly encoding them within a concatenated natural language sequence, and unify the modeling of interactions with a proposed Interaction Map, which is built upon the off-the-shelf self-attention mechanism within any Transformer block. With comprehensive experiments on two popular relational triple extraction datasets, we demonstrate that UniRel is more effective and computationally efficient. The source code is available at https://github.com/wtangdev/UniRel.