2024
pdf
bib
abs
Se2: Sequential Example Selection for In-Context Learning
Haoyu Liu
|
Jianfeng Liu
|
Shaohan Huang
|
Yuefeng Zhan
|
Hao Sun
|
Weiwei Deng
|
Furu Wei
|
Qi Zhang
Findings of the Association for Computational Linguistics ACL 2024
The remarkable capability of large language models(LLMs) for in-context learning(ICL) needs to be activated by demonstration examples. Prior work has extensively explored the selection of examples for ICL, predominantly following the “select then organize” paradigm, such approaches often neglect the internal relationships between examples and exist an inconsistency between the training and inference. In this paper, we formulate the problem as a Sequential Selection problem and introduce Se2, a sequential-aware method that leverages the LLM’s feedback on varying context, aiding in capturing inter-relationships and sequential information among examples, significantly enriching the contextuality and relevance of ICL prompts. Meanwhile, we utilize beam search to seek and construct example sequences, enhancing both quality and diversity. Extensive experiments across 23 NLP tasks from 8 distinct categories illustrate that Se2 markedly surpasses competitive baselines and achieves 42% relative improvement over random selection. Further in-depth analysis shows the effectiveness of proposed strategies, highlighting Se2‘s exceptional stability and adaptability across various scenarios. Code available at https://github.com/microsoft/LMOps.
pdf
bib
abs
ResLoRA: Identity Residual Mapping in Low-Rank Adaption
Shuhua Shi
|
Shaohan Huang
|
Minghui Song
|
Zhoujun Li
|
Zihan Zhang
|
Haizhen Huang
|
Furu Wei
|
Weiwei Deng
|
Feng Sun
|
Qi Zhang
Findings of the Association for Computational Linguistics ACL 2024
As one of the most popular parameter-efficient fine-tuning (PEFT) methods, low-rank adaptation (LoRA) is commonly applied to fine-tune large language models (LLMs). However, updating the weights of LoRA blocks effectively and expeditiously is challenging due to the long calculation path in the original model. To address this, we propose ResLoRA, an improved framework of LoRA. By adding residual paths during training and using merging approaches to eliminate these extra paths during inference, our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA. The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method. To the best of our knowledge, ResLoRA is the first work that combines the residual path with LoRA. The code of our method is available at [this url](https://github.com/microsoft/LMOps/tree/main/reslora).
pdf
bib
abs
Calibrating LLM-Based Evaluator
Yuxuan Liu
|
Tianchi Yang
|
Shaohan Huang
|
Zihan Zhang
|
Haizhen Huang
|
Furu Wei
|
Weiwei Deng
|
Feng Sun
|
Qi Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Recent advancements in large language models (LLMs) and their emergent capabilities make LLM a promising reference-free evaluator on the quality of natural language generation, and a competent alternative to human evaluation. However, hindered by the closed-source or high computational demand to host and tune, there is a lack of practice to further calibrate an off-the-shelf LLM-based evaluator towards better human alignment. In this work, we propose AutoCalibrate, a multi-stage, gradient-free approach to automatically calibrate and align an LLM-based evaluator toward human preference. Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels. Then, an initial set of scoring criteria is drafted by the language model itself, leveraging in-context learning on different few-shot examples. To further calibrate this set of criteria, we select the best performers and re-draft them with self-refinement. Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration. Our comprehensive qualitative analysis conveys insightful intuitions and observations on the essence of effective scoring criteria.
pdf
bib
abs
HD-Eval: Aligning Large Language Model Evaluators Through Hierarchical Criteria Decomposition
Yuxuan Liu
|
Tianchi Yang
|
Shaohan Huang
|
Zihan Zhang
|
Haizhen Huang
|
Furu Wei
|
Weiwei Deng
|
Feng Sun
|
Qi Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have emerged as a promising alternative to expensive human evaluations. However, the alignment and coverage of LLM-based evaluations are often limited by the scope and potential bias of the evaluation prompts and criteria. To address this challenge, we propose HD-Eval, a novel framework that iteratively aligns LLM-based evaluators with human preference via Hierarchical Criteria Decomposition. HD-Eval inherits the essence from the evaluation mindset of human experts and enhances the alignment of LLM-based evaluators by decomposing a given evaluation task into finer-grained criteria, aggregating them according to estimated human preferences, pruning insignificant criteria with attribution, and further decomposing significant criteria. By integrating these steps within an iterative alignment training process, we obtain a hierarchical decomposition of criteria that comprehensively captures aspects of natural language at multiple levels of granularity. Implemented as a white box, the human preference-guided aggregator is efficient to train and more explainable than relying solely on prompting, and its independence from model parameters makes it applicable to closed-source LLMs. Extensive experiments on three evaluation domains demonstrate the superiority of HD-Eval in further aligning state-of-the-art evaluators and providing deeper insights into the explanation of evaluation results and the task itself.
2023
pdf
bib
abs
Pre-training Language Model as a Multi-perspective Course Learner
Beiduo Chen
|
Shaohan Huang
|
Zihan Zhang
|
Wu Guo
|
Zhenhua Ling
|
Haizhen Huang
|
Furu Wei
|
Weiwei Deng
|
Qi Zhang
Findings of the Association for Computational Linguistics: ACL 2023
ELECTRA, the generator-discriminator pre-training framework, has achieved impressive semantic construction capability among various downstream tasks. Despite the convincing performance, ELECTRA still faces the challenges of monotonous training and deficient interaction. Generator with only masked language modeling (MLM) leads to biased learning and label imbalance for discriminator, decreasing learning efficiency; no explicit feedback loop from discriminator to generator results in the chasm between these two components, underutilizing the course learning. In this study, a multi-perspective course learning (MCL) method is proposed to fetch a many degrees and visual angles for sample-efficient pre-training, and to fully leverage the relationship between generator and discriminator. Concretely, three self-supervision courses are designed to alleviate inherent flaws of MLM and balance the label in a multi-perspective way. Besides, two self-correction courses are proposed to bridge the chasm between the two encoders by creating a “correction notebook” for secondary-supervision. Moreover, a course soups trial is conducted to solve the “tug-of-war” dynamics problem of MCL, evolving a stronger pre-trained model. Experimental results show that our method significantly improves ELECTRA’s average performance by 2.8% and 3.2% absolute points respectively on GLUE and SQuAD 2.0 benchmarks, and overshadows recent advanced ELECTRA-style models under the same settings. The pre-trained MCL model is available at
https://huggingface.co/McmanusChen/MCL-base.
pdf
bib
abs
Auto Search Indexer for End-to-End Document Retrieval
Tianchi Yang
|
Minghui Song
|
Zihan Zhang
|
Haizhen Huang
|
Weiwei Deng
|
Feng Sun
|
Qi Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023
Generative retrieval, which is a new advanced paradigm for document retrieval, has recently attracted research interests, since it encodes all documents into the model and directly generates the retrieved documents. However, its power is still underutilized since it heavily relies on the “preprocessed” document identifiers (docids), thus limiting its retrieval performance and ability to retrieve new documents. In this paper, we propose a novel fully end-to-end retrieval paradigm. It can not only end-to-end learn the best docids for existing and new documents automatically via a semantic indexing module, but also perform end-to-end document retrieval via an encoder-decoder-based generative model, namely Auto Search Indexer (ASI). Besides, we design a reparameterization mechanism to combine the above two modules into a joint optimization framework. Extensive experimental results demonstrate the superiority of our model over advanced baselines on both public and industrial datasets and also verify the ability to deal with new documents.
pdf
bib
abs
Democratizing Reasoning Ability: Tailored Learning from Large Language Model
Zhaoyang Wang
|
Shaohan Huang
|
Yuxuan Liu
|
Jiahai Wang
|
Minghui Song
|
Zihan Zhang
|
Haizhen Huang
|
Furu Wei
|
Weiwei Deng
|
Feng Sun
|
Qi Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) exhibit impressive emergent abilities in natural language processing, but their democratization is hindered due to huge computation requirements and closed-source nature. Recent research on advancing open-source smaller LMs by distilling knowledge from black-box LLMs has obtained promising results in the instruction-following ability. However, the reasoning ability which is more challenging to foster, is relatively rarely explored. In this paper, we propose a tailored learning approach to distill such reasoning ability to smaller LMs to facilitate the democratization of the exclusive reasoning ability. In contrast to merely employing LLM as a data annotator, we exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm. This paradigm enables the student to expose its deficiencies to the black-box teacher who then can provide customized training data in return. Further, to exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes. The learning from self-reflection and LLM are all tailored to the student’s learning status, thanks to the seamless integration with the multi-round learning paradigm. Comprehensive experiments and analysis on mathematical and commonsense reasoning tasks demonstrate the effectiveness of our method. The code will be available at https://github.com/Raibows/Learn-to-Reason.
pdf
bib
abs
UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation
Daixuan Cheng
|
Shaohan Huang
|
Junyu Bi
|
Yuefeng Zhan
|
Jianfeng Liu
|
Yujing Wang
|
Hao Sun
|
Furu Wei
|
Weiwei Deng
|
Qi Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) are popular for their impressive abilities, but the need for model-specific fine-tuning or task-specific prompt engineering can hinder their generalization. We propose UPRISE (Universal Prompt Retrieval for Improving zero-Shot Evaluation), which tunes a lightweight and versatile retriever that automatically retrieves prompts for a given zero-shot task input. Specifically, we demonstrate universality in a cross-task and cross-model scenario: the retriever is tuned on diverse tasks, but tested on unseen task types; we use a small frozen LLM, GPT-Neo-2.7B, for tuning the retriever, but test the retriever on different LLMs of much larger scales, such as BLOOM-7.1B, OPT-66B and GPT3-175B. Additionally, we show that UPRISE mitigates the hallucination problem in our experiments with ChatGPT, suggesting its potential to improve even the strongest LLMs. Our model and code are available at https://github.com/microsoft/LMOps.
pdf
bib
abs
Dual-Alignment Pre-training for Cross-lingual Sentence Embedding
Ziheng Li
|
Shaohan Huang
|
Zihan Zhang
|
Zhi-Hong Deng
|
Qiang Lou
|
Haizhen Huang
|
Jian Jiao
|
Furu Wei
|
Weiwei Deng
|
Qi Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent studies have shown that dual encoder models trained with the sentence-level translation ranking task are effective methods for cross-lingual sentence embedding. However, our research indicates that token-level alignment is also crucial in multilingual scenarios, which has not been fully explored previously. Based on our findings, we propose a dual-alignment pre-training (DAP) framework for cross-lingual sentence embedding that incorporates both sentence-level and token-level alignment. To achieve this, we introduce a novel representation translation learning (RTL) task, where the model learns to use one-side contextualized token representation to reconstruct its translation counterpart. This reconstruction objective encourages the model to embed translation information into the token representation. Compared to other token-level alignment methods such as translation language modeling, RTL is more suitable for dual encoder architectures and is computationally efficient. Extensive experiments on three sentence-level cross-lingual benchmarks demonstrate that our approach can significantly improve sentence embedding. Our code is available at
https://github.com/ChillingDream/DAP.
pdf
bib
abs
To Copy Rather Than Memorize: A Vertical Learning Paradigm for Knowledge Graph Completion
Rui Li
|
Xu Chen
|
Chaozhuo Li
|
Yanming Shen
|
Jianan Zhao
|
Yujing Wang
|
Weihao Han
|
Hao Sun
|
Weiwei Deng
|
Qi Zhang
|
Xing Xie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Embedding models have shown great power in knowledge graph completion (KGC) task. By learning structural constraints for each training triple, these methods implicitly memorize intrinsic relation rules to infer missing links. However, this paper points out that the multi-hop relation rules are hard to be reliably memorized due to the inherent deficiencies of such implicit memorization strategy, making embedding models underperform in predicting links between distant entity pairs. To alleviate this problem, we present Vertical Learning Paradigm (VLP), which extends embedding models by allowing to explicitly copy target information from related factual triples for more accurate prediction. Rather than solely relying on the implicit memory, VLP directly provides additional cues to improve the generalization ability of embedding models, especially making the distant link prediction significantly easier. Moreover, we also propose a novel relative distance based negative sampling technique (ReD) for more effective optimization. Experiments demonstrate the validity and generality of our proposals on two standard benchmarks. Our code is available at
https://github.com/rui9812/VLP.
pdf
bib
abs
Towards Better Entity Linking with Multi-View Enhanced Distillation
Yi Liu
|
Yuan Tian
|
Jianxun Lian
|
Xinlong Wang
|
Yanan Cao
|
Fang Fang
|
Wen Zhang
|
Haizhen Huang
|
Weiwei Deng
|
Qi Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Dense retrieval is widely used for entity linking to retrieve entities from large-scale knowledge bases. Mainstream techniques are based on a dual-encoder framework, which encodes mentions and entities independently and calculates their relevances via rough interaction metrics, resulting in difficulty in explicitly modeling multiple mention-relevant parts within entities to match divergent mentions. Aiming at learning entity representations that can match divergent mentions, this paper proposes a Multi-View Enhanced Distillation (MVD) framework, which can effectively transfer knowledge of multiple fine-grained and mention-relevant parts within entities from cross-encoders to dual-encoders. Each entity is split into multiple views to avoid irrelevant information being over-squashed into the mention-relevant view. We further design cross-alignment and self-alignment mechanisms for this framework to facilitate fine-grained knowledge distillation from the teacher model to the student model. Meanwhile, we reserve a global-view that embeds the entity as a whole to prevent dispersal of uniform information. Experiments show our method achieves state-of-the-art performance on several entity linking benchmarks.