Wenhu Chen


2024

pdf bib
MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response
Zihao Deng | Yinghao Ma | Yudong Liu | Rongchen Guo | Ge Zhang | Wenhu Chen | Wenhao Huang | Emmanouil Benetos
Findings of the Association for Computational Linguistics: NAACL 2024

Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains not well-explored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT (CITATION) with a frozen LLM, bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q&A datasets, we created the MusicInstruct (MI) dataset from captions in the MusicCaps datasets, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs. Our introduced dataset enables notable advancements beyond previous ones.

pdf bib
E2-LLM: Efficient and Extreme Length Extension of Large Language Models
Jiaheng Liu | ZhiqiBai ZhiqiBai | Yuanxing Zhang | Chenchen Zhang | YuangZh YuangZh | Ge Zhang | JiakaiWang JiakaiWang | Haoran Que | Yukang Chen | Wenbo Su | Tiezheng Ge | Jie Fu | Wenhu Chen | Bo Zheng
Findings of the Association for Computational Linguistics ACL 2024

Training Large Language Models (LLMs) to process extensive context lengths incurs prohibitive computational costs. Prevailing techniques for extending context capabilities in LLMs typically require not only additional training procedures but also access to datasets with long context (e.g., sequences of 32K tokens), presupposing substantial GPU expenditures. To address the aforementioned issues, we introduce a novel solution named Efficient and Extreme length extension for Large Language Models (E2-LLM). E2-LLM entails a singular training process over considerably short sequences (e.g., 4K tokens), which greatly mitigates the cost of continual-pretraining or fine-tuning. Within the training phase, we incorporate a dual augmentation strategy with Rotary Position Embeddings (RoPE) that adjusts the scale and position indices across distinct training samples. E 2 -LLM is meticulously designed to enhance the model’s robustness to diverse relative positions. The experimental results on multiple benchmark datasets demonstrate the superior performance of E 2 -LLM on demanding tasks of processing long contexts.

pdf bib
ChatMusician: Understanding and Generating Music Intrinsically with LLM
Ruibin Yuan | Hanfeng Lin | Yi Wang | Zeyue Tian | Shangda Wu | Tianhao Shen | Ge Zhang | Yuhang Wu | Cong Liu | Ziya Zhou | Liumeng Xue | Ziyang Ma | Qin Liu | Tianyu Zheng | Yizhi Li | Yinghao Ma | Yiming Liang | Xiaowei Chi | Ruibo Liu | Zili Wang | Chenghua Lin | Qifeng Liu | Tao Jiang | Wenhao Huang | Wenhu Chen | Jie Fu | Emmanouil Benetos | Gus Xia | Roger Dannenberg | Wei Xue | Shiyin Kang | Yike Guo
Findings of the Association for Computational Linguistics ACL 2024

While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.

pdf bib
Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models
Alfonso Amayuelas | Kyle Wong | Liangming Pan | Wenhu Chen | William Yang Wang
Findings of the Association for Computational Linguistics ACL 2024

This paper investigates the capabilities of Large Language Models (LLMs) in understanding their knowledge and uncertainty over questions. Specifically, we focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers. To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ) and establish a categorization framework to clarify the origins of uncertainty in such queries. Subsequently, we examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries within open-ended question-answering scenarios. The fine-tuned models demonstrated a significant improvement, achieving a considerable increase in F1-score relative to their pre-fine-tuning state. Through a comprehensive analysis, we reveal insights into the models’ improved uncertainty articulation and their consequent efficacy in multi-agent debates. These findings help us understand how LLMs can be trained to identify and express uncertainty, improving our knowledge of how they understand and express complex or unclear information.

pdf bib
SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval
Siwei Wu | Yizhi Li | Kang Zhu | Ge Zhang | Yiming Liang | Kaijing Ma | Chenghao Xiao | Haoran Zhang | Bohao Yang | Wenhu Chen | Wenhao Huang | Noura Al Moubayed | Jie Fu | Chenghua Lin
Findings of the Association for Computational Linguistics ACL 2024

Multi-modal information retrieval (MMIR) is a rapidly evolving field where significant progress has been made through advanced representation learning and cross-modality alignment research, particularly in image-text pairing.However, current benchmarks for evaluating MMIR performance on image-text pairings overlook the scientific domain, which has a notable gap with the generic data since the caption of scientific charts and tables usually describes the analysis of experimental results or scientific principles in contrast to human activity or scenery depicted in generic images.To bridge this gap, we develop a scientific domain-specific MMIR benchmark (SciMMIR) by leveraging open-access research paper corpora to extract data relevant to the scientific domain. This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions from scientific documents.We further annotate the image-text pairs with a two-level subset-subcategory hierarchy to facilitate a more comprehensive evaluation of the baselines. We conduct zero-shot and fine-tuned evaluations on prominent multi-modal image-captioning and visual language models, such as CLIP, BLIP, and BLIP-2.Our findings offer critical insights for MMIR in the scientific domain, including the impact of pre-training and fine-tuning settings and the effects of different visual and textual encoders.

pdf bib
OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement
Tianyu Zheng | Ge Zhang | Tianhao Shen | Xueling Liu | Bill Yuchen Lin | Jie Fu | Wenhu Chen | Xiang Yue
Findings of the Association for Computational Linguistics ACL 2024

The introduction of large language models has significantly advanced code generation. However, open-source models often lack the execution capabilities and iterative refinement of advanced systems like the GPT-4 Code Interpreter. To address this, we introduce OpenCodeInterpreter, a family of open-source code systems designed for generating, executing, and iteratively refining code. Supported by Code Feedback, a dataset featuring 68K multi-turn interactions, OpenCodeInterpreter integrates execution and human feedback for dynamic code refinement. Our comprehensive evaluation of OpenCodeInterpreter across key benchmarks such as HumanEval, MBPP, and their enhanced versions from EvalPlus reveals its exceptional performance. Notably, OpenCodeInterpreter-33B achieves an accuracy of 83.2 (76.4) on the average (and plus versions) of HumanEval and MBPP, closely rivaling GPT-4’s 84.2 (76.2) and further elevates to 91.6 (84.6) with synthesized human feedback from GPT-4. OpenCodeInterpreterbrings the gap between open-source code generation models and proprietary systems like GPT-4 Code Interpreter.

pdf bib
VIEScore: Towards Explainable Metrics for Conditional Image Synthesis Evaluation
Max Ku | Dongfu Jiang | Cong Wei | Xiang Yue | Wenhu Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the rapidly advancing field of conditional image generation research, challenges such as limited explainability lie in effectively evaluating the performance and capabilities of various models. This paper introduces VIEScore, a Visual Instruction-guided Explainable metric for evaluating any conditional image generation tasks. VIEScore leverages general knowledge from Multimodal Large Language Models (MLLMs) as the backbone and does not require training or fine-tuning. We evaluate VIEScore on seven prominent tasks in conditional image tasks and found: (1) VIEScore (GPT4-o) achieves a high Spearman correlation of 0.4 with human evaluations, while the human-to-human correlation is 0.45. (2) VIEScore (with open-source MLLM) is significantly weaker than GPT-4o and GPT-4v in evaluating synthetic images. (3) VIEScore achieves a correlation on par with human ratings in the generation tasks but struggles in editing tasks. With these results, we believe VIEScore shows its great potential to replace human judges in evaluating image synthesis tasks.

2023

pdf bib
Attacking Open-domain Question Answering by Injecting Misinformation
Liangming Pan | Wenhu Chen | Min-Yen Kan | William Yang Wang
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Few-shot In-context Learning on Knowledge Base Question Answering
Tianle Li | Xueguang Ma | Alex Zhuang | Yu Gu | Yu Su | Wenhu Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Question answering over knowledge bases is considered a difficult problem due to the challenge of generalizing to a wide variety of possible natural language questions. Additionally, the heterogeneity of knowledge base schema items between different knowledge bases often necessitates specialized training for different knowledge base question-answering (KBQA) datasets. To handle questions over diverse KBQA datasets with a unified training-free framework, we propose KB-BINDER, which for the first time enables few-shot in-context learning over KBQA tasks. Firstly, KB-BINDER leverages large language models like Codex to generate logical forms as the draft for a specific question by imitating a few demonstrations. Secondly, KB-BINDER grounds on the knowledge base to bind the generated draft to an executable one with BM25 score matching. The experimental results on four public heterogeneous KBQA datasets show that KB-BINDER can achieve a strong performance with only a few in-context demonstrations. Especially on GraphQA and 3-hop MetaQA, KB-BINDER can even outperform the state-of-the-art trained models. On GrailQA and WebQSP, our model is also on par with other fully-trained models. We believe KB-BINDER can serve as an important baseline for future research. We plan to release all the code and data. Our code is available at https://github.com/ltl3A87/KB-BINDER.

pdf bib
Large Language Models are few(1)-shot Table Reasoners
Wenhu Chen
Findings of the Association for Computational Linguistics: EACL 2023

Recent literature has shown that large language models (LLMs) are generally excellent few-shot reasoners to solve text reasoning tasks. However, the capability of LLMs on table reasoning tasks is yet to be explored. In this paper, we aim at understanding how well LLMs can perform table-related tasks with few-shot in-context learning. Specifically, we evaluated LLMs on popular table QA and fact verification datasets like WikiTableQuestion, FetaQA, TabFact, and FEVEROUS and found that LLMs are competent at complex reasoning over table structures, though these models are not pre-trained on any table corpus. When combined with ‘chain of thoughts’ prompting, LLMs can achieve very strong performance with only a 1-shot demonstration, even on par with some SoTA models. We show that LLMs are even more competent at generating comprehensive long-form answers on FetaQA than tuned T5-large. We further manually studied the reasoning chains elicited from LLMs and found that these reasoning chains are highly consistent with the underlying semantic form. We believe that LLMs can serve as a simple yet generic baseline for future research. The code and data are released in https://github.com/wenhuchen/TableCoT.

pdf bib
DePlot: One-shot visual language reasoning by plot-to-table translation
Fangyu Liu | Julian Eisenschlos | Francesco Piccinno | Syrine Krichene | Chenxi Pang | Kenton Lee | Mandar Joshi | Wenhu Chen | Nigel Collier | Yasemin Altun
Findings of the Association for Computational Linguistics: ACL 2023

Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than thousands of data points, DePlot+LLM with just one-shot prompting achieves a 29.4% improvement over finetuned SOTA on human-written queries from the task of chart QA.

pdf bib
On the Risk of Misinformation Pollution with Large Language Models
Yikang Pan | Liangming Pan | Wenhu Chen | Preslav Nakov | Min-Yen Kan | William Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation and its subsequent impact on information-intensive applications, particularly Open-Domain Question Answering (ODQA) systems. We establish a threat model and simulate potential misuse scenarios, both unintentional and intentional, to assess the extent to which LLMs can be utilized to produce misinformation. Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation (up to 87%) in the performance of ODQA systems. Moreover, we uncover disparities in the attributes associated with persuading humans and machines, presenting an obstacle to current human-centric approaches to combat misinformation. To mitigate the harm caused by LLM-generated misinformation, we propose three defense strategies: misinformation detection, vigilant prompting, and reader ensemble. These approaches have demonstrated promising results, albeit with certain associated costs. Lastly, we discuss the practicality of utilizing LLMs as automatic misinformation generators and provide relevant resources and code to facilitate future research in this area.

pdf bib
Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering
Wenhu Chen | Pat Verga | Michiel de Jong | John Wieting | William W. Cohen
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Existing state-of-the-art methods for open-domain question-answering (ODQA) use an open book approach in which information is first retrieved from a large text corpus or knowledge base (KB) and then reasoned over to produce an answer. A recent alternative is to retrieve from a collection of previously-generated question-answer pairs; this has several practical advantages including being more memory and compute-efficient. Question-answer pairs are also appealing in that they can be viewed as an intermediate between text and KB triples: like KB triples, they often concisely express a single relationship, but like text, have much higher coverage than traditional KBs. In this work, we describe a new QA system that augments a text-to-text model with a large memory of question-answer pairs, and a new pre-training task for the latent step of question retrieval. The pre-training task substantially simplifies training and greatly improves performance on smaller QA benchmarks. Unlike prior systems of this sort, our QA system can also answer multi-hop questions that do not explicitly appear in the collection of stored question-answer pairs.

pdf bib
EDIS: Entity-Driven Image Search over Multimodal Web Content
Siqi Liu | Weixi Feng | Tsu-Jui Fu | Wenhu Chen | William Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Making image retrieval methods practical for real-world search applications requires significant progress in dataset scales, entity comprehension, and multimodal information fusion. In this work, we introduce Entity-Driven Image Search (EDIS), a challenging dataset for cross-modal image search in the news domain. EDIS consists of 1 million web images from actual search engine results and curated datasets, with each image paired with a textual description. Unlike datasets that assume a small set of single-modality candidates, EDIS reflects real-world web image search scenarios by including a million multimodal image-text pairs as candidates. EDIS encourages the development of retrieval models that simultaneously address cross-modal information fusion and matching. To achieve accurate ranking results, a model must: 1) understand named entities and events from text queries, 2) ground entities onto images or text descriptions, and 3) effectively fuse textual and visual representations. Our experimental results show that EDIS challenges state-of-the-art methods with dense entities and the large-scale candidate set. The ablation study also proves that fusing textual features with visual features is critical in improving retrieval results.

pdf bib
TheoremQA: A Theorem-driven Question Answering Dataset
Wenhu Chen | Ming Yin | Max Ku | Pan Lu | Yixin Wan | Xueguang Ma | Jianyu Xu | Xinyi Wang | Tony Xia
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models’ capabilities to apply theorems to solve challenging science problems. TheoremQA is curated by domain experts containing 800 high-quality questions covering 350 theorems from Math, Physics, EE&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4’s capabilities to solve these problems are unparalleled, achieving an accuracy of 51% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of TheoremQA, we believe it can be used as a better benchmark to evaluate LLMs’ capabilities to solve challenging science problems.

2022

pdf bib
MuRAG: Multimodal Retrieval-Augmented Generator for Open Question Answering over Images and Text
Wenhu Chen | Hexiang Hu | Xi Chen | Pat Verga | William Cohen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

While language Models store a massive amount of world knowledge implicitly in their parameters, even very large models often fail to encode information about rare entities and events, while incurring huge computational costs. Recently, retrieval-augmented models, such as REALM, RAG, and RETRO, have incorporated world knowledge into language generation by leveraging an external non-parametric index and have demonstrated impressive performance with constrained model sizes. However, these methods are restricted to retrieving only textual knowledge, neglecting the ubiquitous amount of knowledge in other modalities like images – much of which contains information not covered by any text. To address this limitation, we propose the first Multimodal Retrieval-Augmented Transformer (MuRAG), which accesses an external non-parametric multimodal memory to augment language generation. MuRAG is pre-trained with a mixture of large-scale image-text and text-only corpora using a joint contrastive and generative loss. We perform experiments on two different datasets that require retrieving and reasoning over both images and text to answer a given query: WebQA, and MultimodalQA. Our results show that MuRAG achieves state-of-the-art accuracy, outperforming existing models by 10-20% absolute on both datasets and under both distractor and full-wiki settings.

pdf bib
Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI)
Wenhu Chen | Xinyun Chen | Zhiyu Chen | Ziyu Yao | Michihiro Yasunaga | Tao Yu | Rui Zhang
Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI)

pdf bib
HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on Tabular and Textual Data
Kai Nakamura | Sharon Levy | Yi-Lin Tuan | Wenhu Chen | William Yang Wang
Findings of the Association for Computational Linguistics: ACL 2022

A pressing challenge in current dialogue systems is to successfully converse with users on topics with information distributed across different modalities. Previous work in multiturn dialogue systems has primarily focused on either text or table information. In more realistic scenarios, having a joint understanding of both is critical as knowledge is typically distributed over both unstructured and structured forms. We present a new dialogue dataset, HybriDialogue, which consists of crowdsourced natural conversations grounded on both Wikipedia text and tables. The conversations are created through the decomposition of complex multihop questions into simple, realistic multiturn dialogue interactions. We propose retrieval, system state tracking, and dialogue response generation tasks for our dataset and conduct baseline experiments for each. Our results show that there is still ample opportunity for improvement, demonstrating the importance of building stronger dialogue systems that can reason over the complex setting of informationseeking dialogue grounded on tables and text.

pdf bib
Controllable Dialogue Simulation with In-context Learning
Zekun Li | Wenhu Chen | Shiyang Li | Hong Wang | Jing Qian | Xifeng Yan
Findings of the Association for Computational Linguistics: EMNLP 2022

Building dialogue systems requires a large corpus of annotated dialogues. Such datasets are usually created via crowdsourcing, which is expensive and time-consuming. In this paper, we propose Dialogic, a novel dialogue simulation method based on large language model in-context learning to automate dataset creation. Seeded with a few annotated dialogues, Dialogic automatically selects in-context examples for demonstration and prompts GPT-3 to generate new dialogues and annotations in a controllable way. Our method can rapidly expand a small set of dialogue data with minimum or zero human involvement and parameter update and is thus much more cost-efficient and time-saving than crowdsourcing. Experimental results on the MultiWOZ dataset demonstrate that training a model on the simulated dialogues leads to even better performance than using the same amount of human-generated dialogues under the challenging low-resource settings, with as few as 85 dialogues as a seed. When the full training set is given, our method can still serve as an effective data augmentation method to further improve performance. Human evaluation results also show that our simulated dialogues have near-human fluency and annotation accuracy. The code and data are available at https://github.com/Leezekun/dialogic.

2021

pdf bib
FinQA: A Dataset of Numerical Reasoning over Financial Data
Zhiyu Chen | Wenhu Chen | Charese Smiley | Sameena Shah | Iana Borova | Dylan Langdon | Reema Moussa | Matt Beane | Ting-Hao Huang | Bryan Routledge | William Yang Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The sheer volume of financial statements makes it difficult for humans to access and analyze a business’s financials. Robust numerical reasoning likewise faces unique challenges in this domain. In this work, we focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents. In contrast to existing tasks on general domain, the finance domain includes complex numerical reasoning and understanding of heterogeneous representations. To facilitate analytical progress, we propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts. We also annotate the gold reasoning programs to ensure full explainability. We further introduce baselines and conduct comprehensive experiments in our dataset. The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge and in complex multi-step numerical reasoning on that knowledge. Our dataset – the first of its kind – should therefore enable significant, new community research into complex application domains. The dataset and code are publicly available at https://github.com/czyssrs/FinQA.

pdf bib
A Systematic Investigation of KB-Text Embedding Alignment at Scale
Vardaan Pahuja | Yu Gu | Wenhu Chen | Mehdi Bahrami | Lei Liu | Wei-Peng Chen | Yu Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge bases (KBs) and text often contain complementary knowledge: KBs store structured knowledge that can support long range reasoning, while text stores more comprehensive and timely knowledge in an unstructured way. Separately embedding the individual knowledge sources into vector spaces has demonstrated tremendous successes in encoding the respective knowledge, but how to jointly embed and reason with both knowledge sources to fully leverage the complementary information is still largely an open problem. We conduct a large-scale, systematic investigation of aligning KB and text embeddings for joint reasoning. We set up a novel evaluation framework with two evaluation tasks, few-shot link prediction and analogical reasoning, and evaluate an array of KB-text embedding alignment methods. We also demonstrate how such alignment can infuse textual information into KB embeddings for more accurate link prediction on emerging entities and events, using COVID-19 as a case study.

pdf bib
Zero-shot Fact Verification by Claim Generation
Liangming Pan | Wenhu Chen | Wenhan Xiong | Min-Yen Kan | William Yang Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Neural models for automated fact verification have achieved promising results thanks to the availability of large, human-annotated datasets. However, for each new domain that requires fact verification, creating a dataset by manually writing claims and linking them to their supporting evidence is expensive. We develop QACG, a framework for training a robust fact verification model by using automatically generated claims that can be supported, refuted, or unverifiable from evidence from Wikipedia. QACG generates question-answer pairs from the evidence and then converts them into different types of claims. Experiments on the FEVER dataset show that our QACG framework significantly reduces the demand for human-annotated training data. In a zero-shot scenario, QACG improves a RoBERTa model’s F1 from 50% to 77%, equivalent in performance to 2K+ manually-curated examples. Our QACG code is publicly available.

pdf bib
Unsupervised Multi-hop Question Answering by Question Generation
Liangming Pan | Wenhu Chen | Wenhan Xiong | Min-Yen Kan | William Yang Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Obtaining training data for multi-hop question answering (QA) is time-consuming and resource-intensive. We explore the possibility to train a well-performed multi-hop QA model without referencing any human-labeled multi-hop question-answer pairs, i.e., unsupervised multi-hop QA. We propose MQA-QG, an unsupervised framework that can generate human-like multi-hop training data from both homogeneous and heterogeneous data sources. MQA-QG generates questions by first selecting/generating relevant information from each data source and then integrating the multiple information to form a multi-hop question. Using only generated training data, we can train a competent multi-hop QA which achieves 61% and 83% of the supervised learning performance for the HybridQA and the HotpotQA dataset, respectively. We also show that pretraining the QA system with the generated data would greatly reduce the demand for human-annotated training data. Our codes are publicly available at https://github.com/teacherpeterpan/Unsupervised-Multi-hop-QA.

pdf bib
Task-adaptive Pre-training and Self-training are Complementary for Natural Language Understanding
Shiyang Li | Semih Yavuz | Wenhu Chen | Xifeng Yan
Findings of the Association for Computational Linguistics: EMNLP 2021

Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data. However, it’s unclear whether they learn similar representations or they can be effectively combined. In this paper, we show that TAPT and ST can be complementary with simple TFS protocol by following TAPT -> Finetuning -> Self-training (TFS) process. Experimental results show that TFS protocol can effectively utilize unlabeled data to achieve strong combined gains consistently across six datasets covering sentiment classification, paraphrase identification, natural language inference, named entity recognition and dialogue slot classification. We investigate various semi-supervised settings and consistently show that gains from TAPT and ST can be strongly additive by following TFS procedure. We hope that TFS could serve as an important semi-supervised baseline for future NLP studies.

2020

pdf bib
KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation
Wenhu Chen | Yu Su | Xifeng Yan | William Yang Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Data-to-text generation has recently attracted substantial interests due to its wide applications. Existing methods have shown impressive performance on an array of tasks. However, they rely on a significant amount of labeled data for each task, which is costly to acquire and thus limits their application to new tasks and domains. In this paper, we propose to leverage pre-training and transfer learning to address this issue. We propose a knowledge-grounded pre-training (KGPT), which consists of two parts, 1) a general knowledge-grounded generation model to generate knowledge-enriched text. 2) a pre-training paradigm on a massive knowledge-grounded text corpus crawled from the web. The pre-trained model can be fine-tuned on various data-to-text generation tasks to generate task-specific text. We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness. Under the fully-supervised setting, our model can achieve remarkable gains over the known baselines. Under zero-shot setting, our model without seeing any examples achieves over 30 ROUGE-L on WebNLG while all other baselines fail. Under the few-shot setting, our model only needs about one-fifteenth as many labeled examples to achieve the same level of performance as baseline models. These experiments consistently prove the strong generalization ability of our proposed framework.

pdf bib
Few-Shot NLG with Pre-Trained Language Model
Zhiyu Chen | Harini Eavani | Wenhu Chen | Yinyin Liu | William Yang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural-based end-to-end approaches to natural language generation (NLG) from structured data or knowledge are data-hungry, making their adoption for real-world applications difficult with limited data. In this work, we propose the new task of few-shot natural language generation. Motivated by how humans tend to summarize tabular data, we propose a simple yet effective approach and show that it not only demonstrates strong performance but also provides good generalization across domains. The design of the model architecture is based on two aspects: content selection from input data and language modeling to compose coherent sentences, which can be acquired from prior knowledge. With just 200 training examples, across multiple domains, we show that our approach achieves very reasonable performances and outperforms the strongest baseline by an average of over 8.0 BLEU points improvement. Our code and data can be found at https://github.com/czyssrs/Few-Shot-NLG

pdf bib
Logical Natural Language Generation from Open-Domain Tables
Wenhu Chen | Jianshu Chen | Yu Su | Zhiyu Chen | William Yang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural natural language generation (NLG) models have recently shown remarkable progress in fluency and coherence. However, existing studies on neural NLG are primarily focused on surface-level realizations with limited emphasis on logical inference, an important aspect of human thinking and language. In this paper, we suggest a new NLG task where a model is tasked with generating natural language statements that can be logically entailed by the facts in an open-domain semi-structured table. To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset~(CITATION) featured with a wide range of logical/symbolic inferences as our testbed, and propose new automatic metrics to evaluate the fidelity of generation models w.r.t. logical inference. The new task poses challenges to the existing monotonic generation frameworks due to the mismatch between sequence order and logical order. In our experiments, we comprehensively survey different generation architectures (LSTM, Transformer, Pre-Trained LM) trained with different algorithms (RL, Adversarial Training, Coarse-to-Fine) on the dataset and made following observations: 1) Pre-Trained LM can significantly boost both the fluency and logical fidelity metrics, 2) RL and Adversarial Training are trading fluency for fidelity, 3) Coarse-to-Fine generation can help partially alleviate the fidelity issue while maintaining high language fluency. The code and data are available at https://github.com/wenhuchen/LogicNLG.

pdf bib
HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data
Wenhu Chen | Hanwen Zha | Zhiyu Chen | Wenhan Xiong | Hong Wang | William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Existing question answering datasets focus on dealing with homogeneous information, based either only on text or KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms, using homogeneous information alone might lead to severe coverage problems. To fill in the gap, we present HybridQA, a new large-scale question-answering dataset that requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table and multiple free-form corpora linked with the entities in the table. The questions are designed to aggregate both tabular information and text information, i.e., lack of either form would render the question unanswerable. We test with three different models: 1) a table-only model. 2) text-only model. 3) a hybrid model that combines heterogeneous information to find the answer. The experimental results show that the EM scores obtained by two baselines are below 20%, while the hybrid model can achieve an EM over 40%. This gap suggests the necessity to aggregate heterogeneous information in HybridQA. However, the hybrid model’s score is still far behind human performance. Hence, HybridQA can serve as a challenging benchmark to study question answering with heterogeneous information.

pdf bib
Logic2Text: High-Fidelity Natural Language Generation from Logical Forms
Zhiyu Chen | Wenhu Chen | Hanwen Zha | Xiyou Zhou | Yunkai Zhang | Sairam Sundaresan | William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Previous studies on Natural Language Generation (NLG) from structured data have primarily focused on surface-level descriptions of record sequences. However, for complex structured data, e.g., multi-row tables, it is often desirable for an NLG system to describe interesting facts from logical inferences across records. If only provided with the table, it is hard for existing models to produce controllable and high-fidelity logical generations. In this work, we formulate high-fidelity NLG as generation from logical forms in order to obtain controllable and faithful generations. We present a new large-scale dataset, Logic2Text, with 10,753 descriptions involving common logic types paired with the underlying logical forms. The logical forms show diversified graph structure of free schema, which pose great challenges on the model’s ability to understand the semantics. We experiment on (1) Fully-supervised training with the full datasets, and (2) Few-shot setting, provided with hundreds of paired examples; We compare several popular generation models and analyze their performances. We hope our dataset can encourage research towards building an advanced NLG system capable of natural, faithful, and human-like generation. The dataset and code is available at https://github.com/czyssrs/Logic2Text.

2019

pdf bib
Global Textual Relation Embedding for Relational Understanding
Zhiyu Chen | Hanwen Zha | Honglei Liu | Wenhu Chen | Xifeng Yan | Yu Su
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Pre-trained embeddings such as word embeddings and sentence embeddings are fundamental tools facilitating a wide range of downstream NLP tasks. In this work, we investigate how to learn a general-purpose embedding of textual relations, defined as the shortest dependency path between entities. Textual relation embedding provides a level of knowledge between word/phrase level and sentence level, and we show that it can facilitate downstream tasks requiring relational understanding of the text. To learn such an embedding, we create the largest distant supervision dataset by linking the entire English ClueWeb09 corpus to Freebase. We use global co-occurrence statistics between textual and knowledge base relations as the supervision signal to train the embedding. Evaluation on two relational understanding tasks demonstrates the usefulness of the learned textual relation embedding. The data and code can be found at https://github.com/czyssrs/GloREPlus

pdf bib
Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention
Wenhu Chen | Jianshu Chen | Pengda Qin | Xifeng Yan | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Semantically controlled neural response generation on limited-domain has achieved great performance. However, moving towards multi-domain large-scale scenarios are shown to be difficult because the possible combinations of semantic inputs grow exponentially with the number of domains. To alleviate such scalability issue, we exploit the structure of dialog acts to build a multi-layer hierarchical graph, where each act is represented as a root-to-leaf route on the graph. Then, we incorporate such graph structure prior as an inductive bias to build a hierarchical disentangled self-attention network, where we disentangle attention heads to model designated nodes on the dialog act graph. By activating different (disentangled) heads at each layer, combinatorially many dialog act semantics can be modeled to control the neural response generation. On the large-scale Multi-Domain-WOZ dataset, our model can yield a significant improvement over the baselines on various automatic and human evaluation metrics.

pdf bib
How Large a Vocabulary Does Text Classification Need? A Variational Approach to Vocabulary Selection
Wenhu Chen | Yu Su | Yilin Shen | Zhiyu Chen | Xifeng Yan | William Yang Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

With the rapid development in deep learning, deep neural networks have been widely adopted in many real-life natural language applications. Under deep neural networks, a pre-defined vocabulary is required to vectorize text inputs. The canonical approach to select pre-defined vocabulary is based on the word frequency, where a threshold is selected to cut off the long tail distribution. However, we observed that such a simple approach could easily lead to under-sized vocabulary or over-sized vocabulary issues. Therefore, we are interested in understanding how the end-task classification accuracy is related to the vocabulary size and what is the minimum required vocabulary size to achieve a specific performance. In this paper, we provide a more sophisticated variational vocabulary dropout (VVD) based on variational dropout to perform vocabulary selection, which can intelligently select the subset of the vocabulary to achieve the required performance. To evaluate different algorithms on the newly proposed vocabulary selection problem, we propose two new metrics: Area Under Accuracy-Vocab Curve and Vocab Size under X% Accuracy Drop. Through extensive experiments on various NLP classification tasks, our variational framework is shown to significantly outperform the frequency-based and other selection baselines on these metrics.

2018

pdf bib
Generative Bridging Network for Neural Sequence Prediction
Wenhu Chen | Guanlin Li | Shuo Ren | Shujie Liu | Zhirui Zhang | Mu Li | Ming Zhou
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

In order to alleviate data sparsity and overfitting problems in maximum likelihood estimation (MLE) for sequence prediction tasks, we propose the Generative Bridging Network (GBN), in which a novel bridge module is introduced to assist the training of the sequence prediction model (the generator network). Unlike MLE directly maximizing the conditional likelihood, the bridge extends the point-wise ground truth to a bridge distribution conditioned on it, and the generator is optimized to minimize their KL-divergence. Three different GBNs, namely uniform GBN, language-model GBN and coaching GBN, are proposed to penalize confidence, enhance language smoothness and relieve learning burden. Experiments conducted on two recognized sequence prediction tasks (machine translation and abstractive text summarization) show that our proposed GBNs can yield significant improvements over strong baselines. Furthermore, by analyzing samples drawn from different bridges, expected influences on the generator are verified.

pdf bib
Variational Knowledge Graph Reasoning
Wenhu Chen | Wenhan Xiong | Xifeng Yan | William Yang Wang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (Diva) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, Diva is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.

pdf bib
XL-NBT: A Cross-lingual Neural Belief Tracking Framework
Wenhu Chen | Jianshu Chen | Yu Su | Xin Wang | Dong Yu | Xifeng Yan | William Yang Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Task-oriented dialog systems are becoming pervasive, and many companies heavily rely on them to complement human agents for customer service in call centers. With globalization, the need for providing cross-lingual customer support becomes more urgent than ever. However, cross-lingual support poses great challenges—it requires a large amount of additional annotated data from native speakers. In order to bypass the expensive human annotation and achieve the first step towards the ultimate goal of building a universal dialog system, we set out to build a cross-lingual state tracking framework. Specifically, we assume that there exists a source language with dialog belief tracking annotations while the target languages have no annotated dialog data of any form. Then, we pre-train a state tracker for the source language as a teacher, which is able to exploit easy-to-access parallel data. We then distill and transfer its own knowledge to the student state tracker in target languages. We specifically discuss two types of common parallel resources: bilingual corpus and bilingual dictionary, and design different transfer learning strategies accordingly. Experimentally, we successfully use English state tracker as the teacher to transfer its knowledge to both Italian and German trackers and achieve promising results.

pdf bib
Triangular Architecture for Rare Language Translation
Shuo Ren | Wenhu Chen | Shujie Liu | Mu Li | Ming Zhou | Shuai Ma
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural Machine Translation (NMT) performs poor on the low-resource language pair (X,Z), especially when Z is a rare language. By introducing another rich language Y, we propose a novel triangular training architecture (TA-NMT) to leverage bilingual data (Y,Z) (may be small) and (X,Y) (can be rich) to improve the translation performance of low-resource pairs. In this triangular architecture, Z is taken as the intermediate latent variable, and translation models of Z are jointly optimized with an unified bidirectional EM algorithm under the goal of maximizing the translation likelihood of (X,Y). Empirical results demonstrate that our method significantly improves the translation quality of rare languages on MultiUN and IWSLT2012 datasets, and achieves even better performance combining back-translation methods.

pdf bib
No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling
Xin Wang | Wenhu Chen | Yuan-Fang Wang | William Yang Wang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Though impressive results have been achieved in visual captioning, the task of generating abstract stories from photo streams is still a little-tapped problem. Different from captions, stories have more expressive language styles and contain many imaginary concepts that do not appear in the images. Thus it poses challenges to behavioral cloning algorithms. Furthermore, due to the limitations of automatic metrics on evaluating story quality, reinforcement learning methods with hand-crafted rewards also face difficulties in gaining an overall performance boost. Therefore, we propose an Adversarial REward Learning (AREL) framework to learn an implicit reward function from human demonstrations, and then optimize policy search with the learned reward function. Though automatic evaluation indicates slight performance boost over state-of-the-art (SOTA) methods in cloning expert behaviors, human evaluation shows that our approach achieves significant improvement in generating more human-like stories than SOTA systems.

2016

pdf bib
Guided Alignment Training for Topic-Aware Neural Machine Translation
Wenhu Chen | Evgeny Matusov | Shahram Khadivi | Jan-Thorsten Peter
Conferences of the Association for Machine Translation in the Americas: MT Researchers' Track

In this paper, we propose an effective way for biasing the attention mechanism of a sequence-to-sequence neural machine translation (NMT) model towards the well-studied statistical word alignment models. We show that our novel guided alignment training approach improves translation quality on real-life e-commerce texts consisting of product titles and descriptions, overcoming the problems posed by many unknown words and a large type/token ratio. We also show that meta-data associated with input texts such as topic or category information can significantly improve translation quality when used as an additional signal to the decoder part of the network. With both novel features, the BLEU score of the NMT system on a product title set improves from 18.6 to 21.3%. Even larger MT quality gains are obtained through domain adaptation of a general domain NMT system to e-commerce data. The developed NMT system also performs well on the IWSLT speech translation task, where an ensemble of four variant systems outperforms the phrase-based baseline by 2.1% BLEU absolute.
Search
Co-authors